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Abstract

The topic is the hat problem in which each of n players is ran-
domly fitted with a blue or red hat. Then everybody can try to guess
simultaneously his own hat color by looking at the hat colors of the
other players. The team wins if at least one player guesses his hat
color correctly, and no one guesses his hat color wrong; otherwise the
team loses. The aim is to maximize the probability of winning. In
this version every player can see everybody excluding himself. We
consider such a problem on a graph, where vertices correspond to
players, and a player can see each player to whom he is connected
by an edge. The solution of the hat problem on a graph is known
for trees and for the cycle C4. We solve the problem on cycles on at
least nine vertices.
Keywords: hat problem, graph, cycle.
AMS Subject Classification: 05C38, 05C99, 91A12.

1 Introduction

In the hat problem, a team of n players enters a room and a blue or red
hat is randomly placed on the head of each player. Each player can see
the hats of all of the other players but not his own. No communication of
any sort is allowed, except for an initial strategy session before the game
begins. Once they have had a chance to look at the other hats, each player
must simultaneously guess the color of his own hat or pass. The team wins
if at least one player guesses his hat color correctly and no one guesses his
hat color wrong; otherwise the team loses. The aim is to maximize the
probability of winning.
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The hat problem with seven players, called the “seven prisoners puzzle”,
was formulated by T. Ebert in his Ph.D. Thesis [12]. The hat problem was
also the subject of articles in The New York Times [24], Die Zeit [6], and
abcNews [23]. It is also a one of subjects of the webpage [4].

The hat problem with 2k − 1 players was solved in [14], and for 2k

players in [11]. The problem with n players was investigated in [7]. The
hat problem and Hamming codes were the subject of [8]. The generalized
hat problem with n people and q colors was investigated in [22].

There are many known variations of the hat problem (for a comprehen-
sive list, see [21]). For example in the papers [1, 10, 18] there was considered
a variation in which passing is not allowed, thus everybody has to guess
his hat color. The aim is to maximize the number of correct guesses. The
authors of [16] investigated several variations of the hat problem in which
the aim is to design a strategy guaranteeing a desired number of correct
guesses. In [17] there was considered a variation in which the probabilities
of getting hats of each colors do not have to be equal. The authors of [2]
investigated a problem similar to the hat problem. There are n players
which have random bits on foreheads, and they have to vote on the parity
of the n bits.

The hat problem and its variations have many applications and con-
nections to different areas of science (for a survey on this topic, see [21]),
for example: information technology [5], linear programming [16], genetic
programming [9], economics [1, 18], biology [17], approximating Boolean
functions [2], and autoreducibility of random sequences [3, 12–15]. There-
fore, it is hoped that the hat problem on a graph is worth exploring as
a natural generalization, and may also have many applications.

We consider the hat problem on a graph, where vertices correspond to
players and a player can see each player to whom he is connected by an
edge. This variation of the hat problem was first considered in [19]. There
were proven some general theorems about the hat problem on a graph, and
the problem was solved on trees. Additionally, there was considered the
hat problem on a graph such that the only known information are degrees
of vertices. In [20] the problem was solved on the cycle C4. It has been
proven that for both trees and the cycle C4 the maximum chance of success
is one by two. Thus in such graph an optimal strategy is for example such
in which one vertex always guesses it is blue, while the remaining vertices
always pass. It means that the structure of such graph does not improve
the maximum chance of success in the hat problem on a graph comparing
to the one-vertex graph.

We solve the hat problem on cycles on at least nine vertices.
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2 Preliminaries

For a graph G, the set of vertices and the set of edges we denote by V (G)
and E(G), respectively. Let v ∈ V (G). The degree of vertex v, that is, the
number of its neighbors, we denote by dG(v). The path (cycle, respectively)
on n vertices we denote by Pn (Cn, respectively).

Let f : X → Y be a function, and let y ∈ Y . If for every x ∈ X we have
f(x) = y, then we write f ≡ y.

Let V (G) = {v1, v2, . . . , vn}. By Sc = {1, 2} we denote the set of colors,
where 1 corresponds to blue, and 2 corresponds to red.

By a case for a graph G we mean a function c : V (G) → {1, 2}, where
c(vi) means color of vertex vi. The set of all cases for the graph G we
denote by C(G); of course |C(G)| = 2|V (G)|.

By a situation of a vertex vi we mean a function si : V (G) → Sc ∪ {0}
= {0, 1, 2}, where si(vj) ∈ Sc if vi and vj are adjacent, and 0 otherwise.
The set of all possible situations of vi in the graph G we denote by Sti(G);
of course |Sti(G)| = 2dG(vi).

We say that a case c for the graph G corresponds to a situation si of
vertex vi if c(vj) = si(vj), for every vj adjacent to vi. This implies that
a case corresponds to a situation of vi if every vertex adjacent to vi in that
case has the same color as in that situation. Of course, to every situation
of the vertex vi correspond exactly 2|V (G)|−dG(vi) cases.

By a guessing instruction of a vertex vi ∈ V (G) we mean a function
gi : Sti(G) → Sc ∪ {0} = {0, 1, 2}, which for a given situation gives the
color vi guesses it is, or 0 if vi passes. Thus, a guessing instruction is a rule
determining the behavior of a vertex in every situation. We say that vi
never guesses its color if vi passes in every situation, that is, gi ≡ 0.

Let c be a case, and let si be the situation (of vertex vi) corresponding
to that case. The guess of vi in the case c is correct (wrong, respectively)
if gi(si) = c(vi) (0 6= gi(si) 6= c(vi), respectively). Let S ∈ F(G) and let
vi ∈ V (G). By L(S, vi) we denote the set of cases for the graph G such
that in the strategy S the vertex vi guesses its color wrong. By result of
the case c we mean a win if at least one vertex guesses its color correctly,
and no vertex guesses its color wrong, that is, gi(si) = c(vi) (for some i)
and there is no j such that 0 6= gj(sj) 6= c(vj). Otherwise the result of the
case c is a loss.

By a strategy for the graph G we mean a sequence (g1, g2, . . . , gn), where
gi is the guessing instruction of vertex vi. The family of all strategies for
a graph G we denote by F(G).

If S ∈ F(G), then the set of cases for the graph G for which the team
wins (loses, respectively) using the strategy S we denote by W (S) (L(S),
respectively). By the chance of success of the strategy S we mean the
number p(S) = |W (S)|/|C(G)|. By the hat number of the graph G we mean

3



the number h(G) = max{p(S) : S ∈ F(G)}. We say that a strategy S is
optimal for the graph G if p(S) = h(G). The family of all optimal strategies
for the graph G we denote by F0(G).

Let t ∈ {1, 2, . . . , n}, and let m1,m2, . . . ,mt ∈ {1, 2, . . . , n} be such
that mj 6= mk for every j 6= k. Let cm1

, cm2
, . . . , cmt

∈ {1, 2}. The
set of cases c for the graph G such that c(vmj

) = cmj
we denote by

C(G, v
cm1
m1 , v

cm2
m2 , . . . , v

cmt
mt ).

By solving the hat problem on a graph G we mean finding the number
h(G).

Now we give an example of notation for the hat problem on the graphK3.
Of course, there are 23 = 8 possible cases. The vertices we denote by v1, v2,
and v3. Assume for example that in a case c the vertices v1 and v3 have the
first color, and the vertex v2 has the second color. Thus c(v1) = c(v3) = 1
and c(v2) = 2. Now let us consider situations of some vertex, say v1. The
vertex v1 can see that v2 has the second color and v3 has the first color. Of
course, the vertex v1 cannot see its own color. Thus s1(v1) = 0, s1(v2) = 2,
and s1(v3) = 1. We say that a case corresponds to that situation if each
one of the neighbors of v1 has the same color as in that situation. It is
easy to see that the case in which v1 and v2 have the second color and v3
has the first color corresponds to that situation. These are the only two
cases corresponding to that situation as 2|V (K3)|−dK3

(v1) = 23−2 = 2. Now
let us consider a guessing instruction of some vertex, say v2. Assume for
example that the vertex v2 guesses it has the first color when v1 and v3
have the second color; it guesses it has the second color when v1 and v3
have the first color; otherwise it passes. We have g2(202) = 1, g2(101) = 2,
and g2(102) = g2(201) = 0. If a case c is such that c(v1) = c(v3) = 1 and
c(v2) = 2, then the guess of v2 is correct as g2(101) = 2 = c(v2).

The following theorems are from [19]. The first of them is a lower bound
on the chance of success of an optimal strategy.

Theorem 1 Let G be a graph. If S is an optimal strategy for G, then
p(S) ≥ 1/2.

Now we give a sufficient condition for deleting a vertex of a graph with-
out changing its hat number.

Theorem 2 Let G be a graph and let v be a vertex of G. If there ex-
ists a strategy S ∈ F0(G) such that v never guesses its color, then h(G)
= h(G− v).

The following theorem is the solution of the hat problem on paths.

Theorem 3 For every path Pn we have h(Pn) = 1/2.
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3 Results

In the next few pages we solve the hat problem on cycles on at least nine
vertices.

We assume that E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}. Let S be
a strategy for Cn such that every vertex guesses its color (rather than
passing) in exactly one situation. Let αi(S), βi(S), γi(S) ∈ {1, 2} (we
write αi, βi, γi) be such that the guess of vi is wrong when c(vi−1) = αi,
c(vi) = βi, and c(vi+1) = γi (i ∈ {2, 3, . . . , n− 1}), the guess of v1 is wrong
when c(vn) = α1, c(v1) = β1, and c(v2) = γ1, and the guess of vn is wrong
when c(vn−1) = αn, c(vn) = βn, and c(v1) = γn. For example, if the vertex
v2 guesses it has the second color when v1 has the first color and v3 has
the second color, then it follows that the vertex v2 guesses its color wrong
when c(v1) = c(v2) = 1 and c(v3) = 2. Therefore α(v2) = β(v2) = 1 and
γ(v2) = 2.

Let us consider strategies such that every vertex guesses its color (rather
than passing) in exactly one situation. In the following lemma we give such
strategy for which the number of cases in which some vertex guesses its
color wrong is as small as possible.

Lemma 4 Let us consider the family of all strategies for Cn such that every
vertex guesses its color (rather than passing) in exactly one situation. The
number of cases in which some vertex guesses its color wrong is minimal
for a strategy S such that γi−1 = βi = αi+1 (i ∈ {2, 3, . . . , n − 1}), γn−1
= βn = α1, and γn = β1 = α2.

Proof. First, we prove that we may assume that αn = γn−2. Consider
the possibility αn 6= γn−2. Thus βn−1 = αn or βn−1 = γn−2, other-
wise αn = γn−2, a contradiction. Without loss of generality we assume
that βn−1 = γn−2. Since αn 6= γn−2, we have γn−2 = βn−1 6= αn. Let
a strategy S′ differ from S only in that αn(S′) 6= αn(S) = αn. Thus
αn(S

′) = βn−1 = γn−2. Let B (B′, respectively) denote the set of cases
in which in the strategy S (S′, respectively) the vertex vn guesses its color
wrong, and at the same time another vertex also guesses its color wrong.
Thus B = L(S, vn) ∩

⋃n−1
i=1 L(S, vi) and B′ = L(S′, vn) ∩

⋃n−1
i=1 L(S

′, vi).
We want to minimize the number of cases in which some vertex guesses its
color wrong. Therefore we want the number of cases in which vn guesses
its color wrong, and at the same time another vertex also guesses its color
wrong to be as great as possible. Since the strategies S and S′ differ
only in the behavior of the vertex vn, and for each set Ai (i ∈ {1, 2, . . . , n
−3}) the color of the vertex vn−1 is not determined, we have |L(S, vn)|
∩
⋃n−3
i=1 L(S, vi)| = |L(S′, vn)| ∩

⋃n−3
i=1 L(S

′, vi)|. We also get |L(S, vn)
∩L(S, vn−2)| = |C(Cn, vαn

n−1, v
βn
n , vγn1 ) ∩ C(Cn, vαn−2

n−3 , v
βn−2

n−2 , v
γn−2

n−1 )| = 0 as
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αn 6= γn−2. Since αn 6= βn−1, we have |L(S, vn) ∩ L(S, vn−1)| = |C(Cn,
vαn
n−1, v

βn
n , vγn1 ) ∩ C(Cn, vαn−1

n−2 , v
βn−1

n−1 , v
γn−1
n )| = 0. This implies that |B′|

≥ |B|, and therefore we may assume that αn = γn−2. Let us make this
assumption.

Now we prove that we may assume that βn−1 = γn−2. Consider the
possibility βn−1 6= γn−2. Let a strategy S′′ differ from S only in that
βn−1(S

′′) 6= βn−1(S) = βn−1, thus βn−1(S′′) = γn−2 = αn. Let us define
sets D and D′′ analogically as the sets B and B′. Similarly we get |D′′|
≥ |D|. Therefore we may assume that βn−1 = γn−2.

Because of the possibility of cyclic renumbering of vertices of the cycle,
we may assume that γi−1 = βi = αi+1 (i ∈ {2, 3, . . . , n − 1}), γn−1 = βn
= α1, and γn = β1 = α2.

If n ≥ 3 is an integer, then let

An = {c ∈ C(Cn) : c(vi−1)=c(vi)=c(vi+1)=1, for an i ∈ {2, 3, . . . , n−1}},

that is, An is the set of cases for Cn such that there are three vertices of the
first color the indices of which are consecutive integers. Let the sequence
{an}∞n=1 be such that an = |An| (n ≥ 3), and also a1 = a2 = 0.

In the following lemma we give a recursive formula for an (with n ≥ 4).

Lemma 5 For every integer n ≥ 4 we have an = 2n−3+an−3+an−2+an−1.

Proof. To find the number an, we have to count the cases for Cn such that
c(vi−1) = c(vi) = c(vi+1) = 1, for some i ∈ {2, 3, . . . , n − 1}. Let c be any
case for Cn. We consider the following four possibilities: (1) min{i : c(vi)
= 2} = 1; (2) min{i : c(vi) = 2} = 2; (3) min{i : c(vi) = 2} = 3; (4) c(v1)
= c(v2) = c(v3) = 1.

(1) There are an−1 such cases, because there are n−1 vertices which can
form a triple of vertices of the first color the indices of which are consecutive
integers.

(2) There are an−2 such cases, because there are n−2 vertices which can
form a triple of vertices of the first color the indices of which are consecutive
integers, as v2 has the second color, and v1 cannot belong to any triple
of vertices of the first color the indices of which are consecutive integers
because of the interruption of v2.

(3) There are an−3 such cases, due to reasons similar to those in (2).
(4) There are 2n−3 such cases, because v1, v2, and v3 form a triple of

vertices of the first color the indices of which are consecutive integers, and
there are 2n−3 possibilities of coloring the remaining n− 3 vertices.

From (1)–(4) it follows that an = 2n−3 + an−3 + an−2 + an−1.
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If n is an integer such that n ≥ 3, then let

Bn = {c ∈ C(Cn) : c(vi−1)=c(vi)=c(vi+1)=1 (for an i ∈ {2, 3, . . . , n− 1})
or c(vn−1) = c(vn) = c(v1) = 1 or c(vn) = c(v1) = c(v2) = 1},

that is, Bn is the set of cases for Cn such that there are three consecutive
vertices of the first color. Let the sequence {bn}∞n=3 be such that bn = |Bn|.

Now we give a relation between the number bn (with n ≥ 6), and the
elements of the sequence {an}∞n=1.

Lemma 6 If n ≥ 6 is an integer, then bn = 5 · 2n−6 + an − 2an−5 − an−6.

Proof. Let us consider the partition of the set Bn (the set of cases for
Cn such that there are three consecutive vertices of the first color) into
the following two sets. In the first set there are the cases for Cn such that
there are three vertices of the first color the indices of which are consecutive
integers. In the second set there are the cases for Cn such that there are
three consecutive vertices of the first color, but there are not any three
vertices of the first color the indices of which are consecutive integers. Thus

Bn = {c ∈ C(Cn) : c(vi−1)=c(vi)=c(vi+1)=1 (for an i ∈ {2, 3, . . . , n− 1})
or c(vn−1) = c(vn) = c(v1) = 1 or c(vn) = c(v1) = c(v2) = 1}

= {c ∈ C(Cn) : c(vi−1)= c(vi)=c(vi+1)=1, for an i ∈ {2, 3, . . . , n−1}}
∪ {c ∈ C(Cn) : c(vn−1)=c(vn)=c(v1)=1 or c(vn)=c(v1)=c(v2)=1,

and at the same time there is no i ∈ {2, 3, . . . , n− 1} such that

c(vi−1) = c(vi) = c(vi+1) = 1}
= An ∪ (Bn \An).

We have

bn = |Bn| = |An ∪ (Bn \An)| = |An|+ |Bn \An| = an + |Bn \An|.

Now let us find a formula for |Bn \An|. Let c be any case for Cn belonging
to the set Bn\An. We consider the following three possibilities: (1) c(vn−1)
= c(vn) = c(v1) = c(v2) = 1 (so also c(vn−2) = c(v3) = 2, as this case does
not belong to the set An); (2) c(vn−1) = 2 and c(vn) = c(v1) = c(v2) = 1
(so also c(v3) = 2, as this case does not belong to the set An); (3) c(vn−1)
= c(vn) = c(v1) = 1 and c(v2) = 2 (so also c(vn−2) = 2, as this case does
not belong to the set An), see Figure 1.

(1) There are 2n−6−an−6 such cases, because there are 2n−6 possibilities
of coloring the remaining n−6 vertices, and we do not count the an−6 cases
such that there are three vertices of the first color the indices of which are
consecutive integers.
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(2) There are 2n−5 − an−5 such cases, due to reasons analogical to that
in (1).

(3) There are 2n−5 − an−5 such cases, also due to reasons analogical to
that in (1).

It follows from (1), (2), and (3) that

|Bn \An| = 2n−6 − an−6 + 2(2n−5 − an−5) = 5 · 2n−6 − 2an−5 − an−6.

Since bn = an + |Bn \An|, we get bn = 5 · 2n−6 + an − 2an−5 − an−6.

a vertex of the first color

a vertex of the second color

a vertex of unknown color

v3

v4

v1

v2

vn−2

vn−3

vn

vn−1

v3

v4

v1

v2

vn−2

vn−3

vn

vn−1

v3

v4

v1

v2

vn−2

vn−3

vn

vn−1

Figure 1: Illustrations to the proof of Lemma 6:
possibilities (1), (2), and (3), respectively

Now we give a lower bound on the number bn (with n ≥ 9).

Lemma 7 For every integer n ≥ 9 we have bn > 2n−1.

Proof. First, we find the eleven initial elements of the sequence {an}∞n=1.
We calculate them recursively. If we try to solve the recurrence which
determines the elements of the sequence {an}∞n=1, then in the generating
function we get the expression x3+x2+x+1 corresponding to the so-called
tribonacci sequence for which the iterative formula is not known. Solving
the recurrence of the sequence {an}∞n=1 using tribonacci numbers, we can
only get a formula which is also recursive.

Using Lemma 5, the definition of the sequence {an}∞n=1, and the fact
that a3 = 1 (as the case in which every vertex has the first color is the only
one such case), we get

a1 = 0,
a2 = 0,
a3 = 1,
a4 = 2 + a1 + a2 + a3 = 2 + 0 + 0 + 1 = 3,
a5 = 22 + a2 + a3 + a4 = 4 + 0 + 1 + 3 = 8,
a6 = 23 + a3 + a4 + a5 = 8 + 1 + 3 + 8 = 20,
a7 = 24 + a4 + a5 + a6 = 16 + 3 + 8 + 20 = 47,
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a8 = 25 + a5 + a6 + a7 = 32 + 8 + 20 + 47 = 107,
a9 = 26 + a6 + a7 + a8 = 64 + 20 + 47 + 107 = 238,
a10 = 27 + a7 + a8 + a9 = 128 + 47 + 107 + 238 = 520,
a11 = 28 + a8 + a9 + a10 = 256 + 107 + 238 + 520 = 1121.

By Lemma 6 we get

b9 = 5 · 23 + a9 − 2a4 − a3
= 40 + 238 − 2 · 3 − 1
= 271
> 256 = 28.

Now assume that n ≥ 10. Since an = |An|, bn = |Bn|, and An ⊆ Bn
(see the definition of the set Bn), we get an ≤ bn. This implies that it
suffices to prove that an > 2n−1. We prove this by induction. We have
a10 = 520 > 512 = 29 and a11 = 1121 > 1024 = 210. Assume that n ≥ 10
is an integer, and we have an > 2n−1 and an+1 > 2n. We prove that
an+2 > 2n+1. By Lemma 5 and the inductive hypothesis we get

an+2 = 2n−1 + an−1 + an + an+1

> 2n−1 + 0 + 2n−1 + 2n

= 2n+1.

Now we solve the hat problem on cycles on at least nine vertices.

Theorem 8 For every integer n ≥ 9 we have h(Cn) = 1/2.

Proof. Let S be an optimal strategy for Cn. If some vertex, say vi, never
guesses its color, then by Theorem 2 we have h(Cn) = h(Cn − vi). Since
Cn − vi = Pn−1 and h(Pn−1) = 1/2 (by Theorem 3), we get h(Cn) = 1/2.
Now assume that every vertex guesses its color (rather than passing) in at
least one situation. We are interested in the possibility when the number
of cases for which the team loses is as small as possible. We assume that
every vertex guesses its color (rather than passing) in exactly one situation,
and we prove that these guesses suffice to cause the loss of the team in
more than half of all cases. Let us consider the strategy S′ ∈ F(Cn) such
that γi−1 = βi = αi+1 (i ∈ {2, 3, . . . , n − 1}), γn−1 = βn = α1, and γn
= β1 = α2. Without loss of generality we assume that γi−1 = βi = αi+1 = 1
(i ∈ {2, 3, . . . , n − 1}), γn−1 = βn = α1 = 1, and γn = β1 = α2 = 1.
Some vertex guesses its color wrong in the cases such that there are three
consecutive vertices of the first color. Using the definition of the sequence
{bn}∞n=3, there are bn such cases. From Lemma 4 we know that the number
of cases in which some vertex guesses its color wrong in the strategy S′

is minimal among all strategies for Cn such that every vertex guesses its
color (rather than passing) in exactly one situation. This implies that in
the strategy S in at least bn cases some vertex guesses its color wrong.
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Therefore the team loses for at least bn cases, that is, |L(S)| ≥ bn. Since
bn > 2n−1 (by Lemma 7), we have |L(S)| > 2n−1. Now we get

p(S) =
|W (S)|
|C(Cn)|

=
|C(Cn)| − |L(S)|
|C(Cn)|

<
2n − 2n−1

2n
=

1

2
,

a contradiction to Corollary 1.

Of course, h(C3) = 3/4. A natural issue is to determine the hat numbers
of cycles of length between four and eight. This will make the hat problem
on cycles solved. One can also investigate the problem on another classes
of graphs. This may be helpful for solving generally the hat problem on an
arbitrary graph.
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