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Abstract

A total dominating set of a graph G is a set D of vertices of G
such that every vertex of G has a neighbor in D. A vertex of a graph
is said to dominate itself and all of its neighbors. A double dominat-
ing set of a graph G is a set D of vertices of G such that every vertex
of G is dominated by at least two vertices of D. The total (double,
respectively) domination number of a graph G is the minimum car-
dinality of a total (double, respectively) dominating set of G. We
characterize all trees with double domination number equal to total
domination number plus one.
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1 Introduction

Let G = (V, E) be a graph. By the neighborhood of a vertex v of G we
mean the set Ng(v) = {u € V(G): uwv € E(G)}. The degree of a vertex v,
denoted by dg(v), is the cardinality of its neighborhood. By a leaf we
mean a vertex of degree one, while a support vertex is a vertex adjacent
to a leaf. We say that a support vertex is strong (weak, respectively) if it
is adjacent to at least two leaves (exactly one leaf, respectively). The path
on n vertices we denote by P,. By a star we mean a connected graph in
which exactly one vertex has degree greater than one. By a double star we
mean a graph obtained from a star by joining a positive number of vertices
to one of its leaves. Let uv be an edge of a graph G. By subdividing the
edge uv we mean removing it, and adding a new vertex, say x, along with
two new edges ux and xv. Subdivided star is a graph obtained from a star
by subdividing each one of its edges.



A subset D C V(G) is a dominating set of G if every vertex of V(G)\ D
has a neighbor in D, while it is a total dominating set, abbreviated TDS,
of G if every vertex of G has a neighbor in D. The domination (total
domination, respectively) number of a graph G, denoted by v(G) (v(G),
respectively), is the minimum cardinality of a dominating (total dominat-
ing, respectively) set of G. Total domination in graphs was introduced
by Cockayne, Dawes, and Hedetniemi [1]. For a comprehensive survey of
domination in graphs, see [3, 4].

A vertex of a graph is said to dominate itself and all of its neighbors.
A subset D C V(G) is a double dominating set, abbreviated DDS, of G if
every vertex of GG is dominated by at least two vertices of D. The double
domination number of a graph G, denoted by 7,4(G), is the minimum car-
dinality of a double dominating set of G. The study of double domination
in graphs was initiated by Harary and Haynes [2].

A paired dominating set of a graph G is a dominating set of vertices
whose induced subgraph has a perfect matching. The authors of [5] charac-
terized all trees with equal total domination and paired domination num-
bers.

We characterize all trees with double domination number equal to total
domination number plus one.

2 Results

Since the one-vertex graph does not have double dominating set, in this
paper, by a tree we mean only a connected graph with no cycle, and which
has at least two vertices.

We begin with the following four straightforward observations.

Observation 1 Fvery support vertez of a graph G is in every v:(G)-set.

Observation 2 For every connected graph G of diameter at least three
there exists a v.(G)-set that contains no leaf.

Observation 3 Every leaf of a graph G is in every v4(G)-set.
Observation 4 Every support vertex of a graph G is in every vq4(Q)-set.

It is easy to see that v4(P2) = 7:(P2) = 2. Now we prove that for every
tree different than P, the double domination number is greater than the
total domination number.

Lemma 5 For every tree T # Py we have vq(T) > v(T).



Proof. Let n mean the number of vertices of the tree T. We proceed
by induction on this number. Since T # P, we have diam(7T) > 2. If
diam(7T) = 2, then T is a star Kj ,,. We have 74(T) =m+1>2+1
> 2 = y%(T). Now let us assume that diam(7") = 3. Thus T is a double
star. We have v4(T) =n >4 > 2 = (7).

Now assume that diam(7T) > 4. Thus the order of the tree T is an
integer n > 5. The result we obtain by the induction on the number n.
Assume that the lemma is true for every tree 7" of order n’ < n.

First assume that some support vertex of T, say x, is strong. Let
y and z mean leaves adjacent to z. Let 7" = T —y. Let D’ be any
~:(T")-set. By Observation 1 we have x € D’. Of course, D’ is a TDS
of the tree T. Thus v (T) < v (T'). Now let D be any ~4(T)-set. By
Observations 3 and 4 we have y,z,x € D. It is easy to see that D \ {y}
is a DDS of the tree 7. Therefore v4(17) < ~v4(T) — 1. Now we get
Ya(T) > %a(T") +1>5(T)+1>v%(T)+ 1> v (T). Henceforth, we can
assume that every support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity diam(7T). Let ¢
be a leaf at maximum distance from r, v be the parent of ¢, u be the parent
of v, and w be the parent of u in the rooted tree. By T, let us denote the
subtree induced by a vertex z and its descendants in the rooted tree T

First assume that dr(u) > 3. Assume that u is adjacent to a leaf, say .
Let " = T — T,. Let D’ be any ~(T")-set. By Observation 1 we have
u € D'. Tt is easy to see that D’ U {v} is a TDS of the tree T. Thus
Y(T) < v(T") + 1. Now let D be any v4(T')-set. By Observations 3 and 4
we have t,z,v,u € D. It is easy to see that D \ {v,t} is a DDS of the
tree T'. Therefore v4(T") < v4(T) — 2. Now we get v4(T) > va(T’) + 2
> (T') +2 2 %(T) +1 > 3(T).

Now assume that among the descendants of u there is a support vertex,
say x, different than v. Let T/ = T—T,,. Let D’ be a v(T")-set that contains
no leaf. The vertex x has to have a neighbor in D', thus v € D’. It is easy to
see that D' U{v} is a TDS of the tree T. Thus v(T) < v(T")+ 1. Now let
D be any v4(T)-set. By Observations 3 and 4 we have t,v,z € D. Ifu € D,
then it is easy to see that D\ {v,t} is DDS of the tree 7. Now assume that
u ¢ D. Let us observe that DU{u}\{v,t} is a DDS of the tree T". Therefore
7a(T") < 7a(T) — 1. Now we get 7a(T) = 1a(T) + 1 > (") + 1 > 3(T).

Now assume that dp(u) = 2. Let T/ =T —T,. If T' = Py, then T = Ps.
We have v4(Ps) = 4 > 3 = y%(Ps). Now assume that 77 # P5. Let D’ be
any v¢(T")-set. It is easy to see that D’U{u, v} is a TDS of the tree T'. Thus
Y(T) < %(T') 4+ 2. Now let us observe that there exists a v4(T)-set that
does not contain the vertex u. Let D be such a set. By Observations 3 and 4
we have ¢t,v € D. Observe that D\ {v,t} is a DDS of the tree T”. Therefore
Ya(T") < 7a(T) = 2. Now we get va(T') = 7a(T") +2 > %(T") + 2 > (T).

|



Now we give a necessary condition for that the double domination num-
ber of a tree is equal to its total domination number plus one.

Lemma 6 If v4(T) = v.(T) + 1, then for every vq4(T)-set D, every vertex
of V(T)\ D has degree two.

Proof. Suppose that there exists a 4(T)-set D that does not contain
a vertex of T, say x, which has degree different than two. By Observation 3,
every leaf belongs to the set D. Therefore dr(z) > 3. First assume that
some neighbor of x, say y, also does not belong to the set D. By T7 and T»
we denote the trees resulting from T by removing the edge zy. Let us
observe that each one of those trees has at least three vertices. We define
Dy =DnNnV(Ty) and Dy = DNV (T3). Let us observe that D; is a DDS
of the tree T} and D is a DDS of the tree Ty. Let D] be any ~;(T1)-set
and let D} be any 7:(T5)-set. By Lemma 5 we have v4(T1) > % (T1) + 1
and v4(T2) > v(Tz) + 1. Of course, D} U D} is a TDS of the tree T. Thus
7(T) < |[D} U Dj|. Now we get v4(T') = |D| = |Dy U Do| = |Dy] + Dy
> va(T1) +va(T2) = % (T1) +1+%(T2) +1 = [D|+|D5|+2 = |[DyUDs | +2
> 3(T) +2 > v(T) + 1, a contradiction.

Now assume that all neighbors of z belong to the set D. First assume
that there is a neighbor of z, say y, such that each one of the two trees
resulting from T by removing the edge xy has at least three vertices. We
get a contradiction similarly as when some neighbor of = does not belong
to the set D. Now assume that there is no neighbor of x such that each
one of the two trees resulting from 7T by removing the edge between them
has at least three vertices. This implies that T is a subdivided star of order
at least seven. Let n mean the number of vertices of the tree T. We have
v (T)=n—1=(n+1)/24+1+(n—5)/2 =%(T)+1+(n—5)/2 > w(T)+1,
a contradiction. ]

We characterize all trees with double domination number equal to total
domination number plus one. For this purpose we introduce a family T
={P3}UAUB, where A= {A1, As,...} and B = {By, By, ...} are families
of trees elements of which are given in Figure 1. A tree A, has 3k + 2
vertices, and a tree By has 3k + 3 vertices.

Now we prove that for every tree of the family T, the double domination
number is equal to the total domination number plus one.

Lemma 7 If T € T, then v4(T) = v(T) + 1.

Proof. Of course, 74(P3) =3 =2+ 1 = (P3) + 1. Let k be a positive
integer. For trees A, and Bj we consider the labeling of the vertices as in
Figure 1.

Let D be a v;(Ayg)-set that contains no leaf. By Observation 1 we have



b1 by by by
c1 Ck c1 Ck
P3 Ay By,

Figure 1: The path Pj, a tree A of the family A, and a tree By, of the
family B

b1,b2,...,bp,x € D. Since each one of the vertices by, bs,...,b; has to
have a neighbor in the set D, we have aj, as,...,a; € D. Therefore v (Ay)
> 2k + 1. It is easy to observe that {b1,c1,bo,ca,..., bk, ck, z,y} is a DDS
of the tree Ax. Thus ~v4(Ax) < 2k + 2. Now we get v4(Ax) < 2k + 2
< 74(Ag)+1. On the other hand, by Lemma 5 we have v4(Ag) > v (Ag)+1.

Now let D be a v¢(By)-set that contains no leaf. By Observation 1 we
have by,bo,...,bk,y € D. Since each one of the vertices by,bs,...,bk,y
has to have a neighbor in D, we have ai,as,...,ar,x € D. Therefore
~v¢(Bk) > 2k + 2. It is easy to observe that {b1,c1,ba,c¢o,... bk, ck, 2, y, 2}
is a DDS of the tree By. Thus v4(Bx) < 2k + 3. Now we get v4(Bg)
< 2k + 3 < v(By) + 1. This implies that v4(Bxk) = v(Bg) + 1. [

Now we prove that if the double domination number of a tree is equal to
its total domination number plus one, then the tree belongs to the family 7.

Lemma 8 Let T be a tree. If vq(T) = v (T)+ 1, thenT € T.

Proof. Let n mean the number of vertices of the tree T. We proceed
by induction on this number. If diam(T) = 1, then T' = P,. We have
Y(T) =2 =%(T) # w(T)+ 1. If diam(T) = 2, then T is a star K7 .
If T = P3, then T € 7. Now assume that T is a star different than Ps.
We have v4(T) =m+1>3+1>2+1=~(T)+ 1. Now let us assume
that diam(7") = 3. Thus T is a double star. We have v4(T) =n >4 >3
=2+ 1=7(T)+1.

Now assume that diam(7") > 4. Thus the order of the tree T is an
integer n > 5. The result we obtain by the induction on the number n.
Assume that the lemma is true for every tree 7" of order n’ < n.



First assume that some support vertex of T, say x, is strong. Let
y and z mean leaves adjacent to . Let T = T — y. Let D’ be any
~v¢(T")-set. By Observation 1 we have x € D’. Of course, D' is a TDS
of the tree T. Thus v (T) < % (T"). Now let D be any ~4(7T)-set. By
Observations 3 and 4 we have y,z,z € D. It is easy to see that D \ {y}
is a DDS of the tree T’. Therefore v4(T") < v4(T) — 1. Now we get
Ya(T") < 74(T)—1 = %(T) < ~v(T"). This is a contradiction as by Lemma 5
we have v4(T") > (T"). Thus every support vertex of T" is weak.

We now root T" at a vertex r of maximum eccentricity diam(7"). Let ¢
be a leaf at maximum distance from r, v be the parent of ¢, u be the parent
of v, and w be the parent of u in the rooted tree. By T, let us denote the
subtree induced by a vertex z and its descendants in the rooted tree T'.

First assume that dp(u) > 3. Assume that u is adjacent to a leaf, say x.
Let 7" = T —T,. Let D' be any ~;(T")-set. By Observation 1 we have
u € D'. Tt is easy to see that D' U {v} is a TDS of the tree T. Thus
Y(T) < v(T') + 1. Now let D be any ~4(T')-set. By Observations 3 and 4
we have ¢,z,v,u € D. It is easy to see that D \ {v,t} is a DDS of the
tree T”. Therefore v4(T") < ~v4(T) — 2. Now we get v4(T") < ~vqo(T) — 2
=v(T) — 1 < v%(T"), a contradiction.

Thus every descendant of w is a support vertex. Let z mean a child of
u different than v. Let 7/ = T — T,,. Let D’ be a 7,(T")-set that contains
no leaf. The vertex z has to have a neighbor in D’, thus u € D’. It is easy
to see that D' U {v} is a TDS of the tree T. Thus v:(T) < %(T") + 1. Now
let D be any ~4(T)-set. By Observations 3 and 4 we have t,v,2 € D. By
Lemma 6 we have v € D. It is easy to see that D\ {v,¢} is a DDS of the
tree T'. Therefore v4(T") < v4(T) — 2. Now we get v4(T") < ~v4(T) — 2
=%(T) — 1 < %(T"), a contradiction.

Now assume that dr(u) =2. Let T/ =T —T,. Y T' = Py, then T = P.
Obviously, Ps = A; € 7. Now assume that 7" # P,. Let D’ be any
~e(T")-set. It is easy to see that D' U {u,v} is a TDS of the tree T. Thus
Y(T) < %(T") + 2. Now let us observe that there exists a v4(T)-set that
does not contain the vertex u. Let D be such a set. By Observations 3 and 4
we have t,v € D. Observe that D\ {v,t} is a DDS of the tree T’. Therefore
7a(T") < 7a(T)—2. Now we get 7a(T") < 7a(T)—2 = 3(T)~1 < 7 (T')+1.
This implies that v4(T") = v (T") + 1. By the inductive hypothesis we have
T € T. If T = P3, then T = Ps. Obviously, P = B; € 7. Now assume
that 7" # P3;. We distinguish between the following two cases: T € A
and T" € B.

Case 1. T" € A. Let T" = Ax. We cousider the labeling of the
vertices as in Figure 1. If w corresponds to x, then it is easy to observe
that T' = Ak+1 eT.

Now assume that w corresponds to y. It is easy to see that {aj, b1,
ag,ba, ..., ak, b, u,v} is a TDS of the tree T. Thus v:(T') < 2k+2. Now let



D be any v4(T)-set. By Observations 3 and 4 we have ¢1,by, ¢a,ba, . . ., ck, b,
t,v € D. By Lemma 6 we have x € D. It is easy to see that those vertices
do not form a DDS of the tree T. Therefore v4(T") > 2k + 4. Now we get
va(T) > 2k +4 > 2k +3 > v (T) + 1, a contradiction.

Now assume that w corresponds to a;, for some i. It is easy to see
that {a1,b1,a2,ba,...,ak, by, x,u,v} is a TDS of the tree T. Thus v(T)
< 2k + 3. Now let D be any ~4(T)-set. By Observations 3 and 4 we
have c¢1,b1,c2,b2,... ¢k, b, y,x,t,v € D. By Lemma 6 we have a; € D.
Therefore v4(T") > 2k+5. Now we get v4(T') > 2k+5 > 2k+4 > w(T)+1,
a contradiction.

Now assume that w corresponds to b;, for some i. Let us observe that

{al, bl,az, bg, ey @i, bi—ly bi,aH_l, bi+1, e, g, bk, JT,U,’U} is a TDS of the
tree T. Thus v (T) < 2k + 2. Now let D be any vq4(T')-set. By Obser-
vations 3 and 4 we have cq,b1,c¢2,bo,..., ¢k, bg,y,z,t,v € D. Therefore

va(T) > 2k + 4. Now we get v4(T) > 2k +4 > 2k +3 > w(T) + 1,
a contradiction.

Now assume that w corresponds to ¢;, for some i. Observe that {ay, b1,
as, b2, ey i1, bi—17 Agy Aj41, bi+1, ey A, bk7 T, Uu, ’U} is a TDS of the tree T'.
Thus v(T) < 2k + 2. Now let D be any v4(T')-set. By Observations 3
and 4 we have c1,b1,c2,b9,...,¢i-1,b;—1,Cix1,bi41, .-, Ck, bi, y,x, t,v € D.
Observe that adding any one of the remaining vertices to those vertices
does not give us a DDS of the tree T. Therefore v4(T) > 2k + 4. Now we
get vq(T) > 2k +4 > 2k 4+ 3 > %(T) + 1, a contradiction.

Case 2. 7" € B. Let T' = By. Let us consider the labeling of the
vertices as in Figure 1. If w corresponds to z, then it is easy to see that
T = Byy1 € T.

Now assume that w corresponds to z. Observe that {ay, b1, as,ba,...,
ak, by, z,u,v} is a TDS of the tree T. Thus v (T) < 2k+3. Now let D be any
~v4(T')-set. By Observations 3 and 4 we have ¢1, b1, ¢2,ba, ..., cx, bg, t,v € D.
By Lemma 6 we have x € D. Let us observe that adding any one of the
remaining vertices to those vertices does not give us a DDS of the tree T
Therefore v4(T") > 2k+5. Now we get v4(T) > 2k+5 > 2k+4 > w(T)+1,
a contradiction.

Now assume that w corresponds to y. Observe that {a1,b1,as,be,...,
ak, b, y,u,v} is a TDS of the tree T. Thus v;(T) < 2k+3. Now let D be any
~v4(T')-set. By Observations 3 and 4 we have c¢1, b1, co,ba, ..., cr, bk, 2,9, t, v
€ D. By Lemma 6 we have x € D. Therefore v4(T) > 2k + 5. Now we get
va(T) > 2k +5> 2k +4 > v(T) + 1, a contradiction.

Now assume that w corresponds to a;, for some i. Observe that {aq, by,
as,ba, ..., ak, br, x,y,u,v}is a TDS of the tree T'. Thus v+(T") < 2k-+4. Now
let D be any ~y4(T)-set. By Observations 3 and 4 we have ¢, b1, 2, b, . . .,
Cky bk, 2,9, t,v € D. By Lemma 6 we have x,a; € D. Therefore v4(7T)
> 2k +6. Now we get v4(T) > 2k+6 > 2k+5 > v (T) +1, a contradiction.



Now assume that w corresponds to b;, for some i. Let us observe that

{a1,b1,a2,b2,...,0;-1,bi—1,bi, @11, big1, . . . a, by, w,y,u, v} is a TDS of
the tree T. Thus v(T) < 2k + 3. Now let D be any v4(T)-set. By
Observations 3 and 4 we have c¢y,b1,¢2,b2,...,¢k,b5,2,y,t,v € D. By

Lemma 6 we have x € D. Therefore v4(T) > 2k + 5. Now we get ~v4(T)
>2k+5>2k+4>~(T)+ 1, a contradiction.
Now assume that w corresponds to c¢;, for some i. Let us observe that

{al, bl,(lg, bQ, ey @i, bi_l,ai,aiﬂ, bi—&-l, e, Qg bk,x,y,u,v} iS a TDS Of
the tree T'. Thus v(T) < 2k+3. Now let D be any ~4(T)-set. By Observa-
tions 3 and 4 we have c1,b1,¢2,b2,...,¢-1,0,—1,Ci41,bi41,---,Ck, b, 2,9,

t,v € D. By Lemma 6 we have x € D. Observe that adding any one of the
remaining vertices to those vertices does not give us a DDS of the tree T
Therefore v4(T') > 2k+5. Now we get v4(T) > 2k+5 > 2k+4 > v (T)+1,
a contradiction. |

As an immediate consequence of Lemmas 7 and 8, we have the following
characterization of the trees with double domination number equal to total
domination number plus one.

Theorem 9 Let T be a tree. Then v4(T) = v(T)+1 if and only if T € T.
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