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Abstract

A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)\ D has
a at least two neighbors in D, and the set V(G) \ D is independent. The 2-outer-independent domination number of
a graph G, denoted by v5*(G), is the minimum cardinality of a 2-outer-independent dominating set of G. We prove
that for every nontrivial tree T of order n with [ leaves we have v5°(T) < (n +1)/2, and we characterize the trees

attaining this upper bound.
Résumé

Un ensemble 2-dominant extérieurement-indépendant d’un graphe G est un ensemble D de sommets de G tel que
chaque sommet de V(G)\ D a au moins deux voisins dans D, et 'ensemble V(G) \ D est indépendant. Le nombre de
2-domination extérieurement-indépendante d’un graphe G, noté par v*(G), est le cardinal minimum d’un ensemble
2-dominant extérieurement-indépendant de G. Nous prouvons I'inégalité v5*(T) < (n +1)/2 pour chaque arbre non

trivial T d’ordre n avec [ feuilles, et nous caractérisons les arbres atteignant cette borne supérieure.

1 Introduction

Let G = (V,E) be a graph. By the neighborhood of a vertex v of G we mean the set Ng(v) = {u
€ V(G): uwv € E(G)}. The degree of a vertex v, denoted by dg(v), is the cardinality of its neighborhood.
By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say
that a support vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly one leaf,
respectively). By G* we denote the graph obtained from G by removing all leaves. The path on n vertices
we denote by P,.

We say that a subset of V(G) is independent if there is no edge between any two vertices of this set. The
independence number of a graph G, denoted by a(G), is the maximum cardinality of an independent subset
of V(G). An independent subset of the set of vertices of G of maximum cardinality is called an o(G)-set.

A subset D C V(G) is a dominating set of G if every vertex of V(G) \ D has a neighbor in D, while it
is a 2-dominating set of G if every vertex of V(G) \ D has at least two neighbors in D. The domination



(2-domination, respectively) number of a graph G, denoted by v(G) (72(G), respectively), is the minimum
cardinality of a dominating (2-dominating, respectively) set of G. Note that 2-domination is a type of
multiple domination in which each vertex, which is not in the dominating set, is dominated at least k times
for a fixed positive integer k. Multiple domination was introduced by Fink and Jacobson [3], and further
studied for example in [1, 2, 4, 5, 8, 10]. For a comprehensive survey of domination in graphs, see [6, 7].

A subset D C V(@) is a 2-outer-independent dominating set, abbreviated 20IDS, of G if every vertex of
V(G) \ D has at least two neighbors in D, and the set V(G) \ D is independent. The 2-outer-independent
domination number of G, denoted by 7§°(G), is the minimum cardinality of a 2-outer-independent dominating
set of G. A 2-outer-independent dominating set of G of minimum cardinality is called a 7$*(G)-set. The
study of 2-outer-independent domination in graphs was initiated in [9].

Blidia, Chellali, and Favaron [1] established the following upper bound on the 2-domination number of
a tree. For every nontrivial tree T of order n with [ leaves we have o (T') < (n+1)/2. They also characterized
the extremal trees.

We prove the following upper bound on the 2-outer-independent domination number of a tree. For every
nontrivial tree T of order n with [ leaves we have v§*(T') < (n+1)/2. We also characterize the trees attaining

this upper bound.

2 Results

We begin with the following straightforward observation.
Observation 1 Every leaf of a graph G is in every 75 (G)-set.

We have the following relation between the 2-outer-independent domination number of a graph without

isolated vertices and the independence number of the graph obtained from it by removing all leaves.
Lemma 2 If G is a graph without isolated vertices, then ¥$*(G) = n — a(G*).

Proof. Let D be any 7§¢(G)-set. By Observation 1, all leaves belong to the set D. Therefore V(G) \ D
C V(G*). The set V(G) \ D is independent, thus a(G*) > |V(G) \ D| = n — 1¢*(G). Now let D* be
any a(G*)-set. Let us observe that in the graph G every vertex of D* has at least two neighbors in the
set V(G) \ D*. Therefore 7v5'(G) < |V(G) \ D*| = n — a(G*). This implies that 7$*(G) = n — a(G*). |

Now we get an upper bound on the 2-outer-independent domination number of bipartite graphs without
isolated vertices.

Lemma 3 For every bipartite graph G without isolated vertices of order n with I leaves we have v5'(G)
<(n+1)/2.

Proof. Observe that the graph G* is also bipartite. Thus there is an independent subset of the set of its
vertices which contains at least half of them. Therefore a(G*) > |V(G*)|/2 = (n —1)/2. Using Lemma 2 we
get H(G)=n—a(G*)<n—(n-10)/2=(n+1)/2. [

By 7naz we denote the family of trees whose 2-outer-independent domination number attains the upper
bound from the previous lemma.

We have the following property of trees of the family 7,4z.



Lemma 4 Let T be a tree. We have T € Tpqy if and only if o(T™) = n*/2.

Proof. If T is a tree of the family 7,42, that is 4$°(T) = (n +1)/2, then using Lemma 2 we get o(T™)
=n—(T)=n—(n+1)/2=(n—1)/2 =n*/2. The converse implication can be proven similarly. ]

We showed that if G is a bipartite graph without isolated vertices of order n with [ leaves, then 4$%(G) is
bounded above by (n 4 1)/2. We characterize all trees attaining this bound. For this purpose we introduce
a family 7 of trees that can be obtained from P, by applying consecutively operations O; or O, defined

below.

e Operation O1: Add one new vertex and one edge joining this new vertex to a non-leaf vertex of a graph.

e Operation O2: Add two new vertices, one edge joining them, and one edge joining one of them to a leaf

of a graph.

Now we prove that for every tree of the family 7, the 2-outer-independent domination number equals

the number of leaves plus half of the remaining vertices.
Lemma 5 Any tree T € T is in Thaz.

Proof. We have 7§¢(P;) =2 = (2+2)/2 = (n +1)/2, thus P» € T,,,4,. Therefore the result is true for the
starting tree. It remains to show that performing the operations @; and Os keeps the property of being
in 7,4z. Let T be a tree obtained from 7" € 7 by operation @;. We have T* = T"*. If TV € T4z,
then Lemma 4 implies that T € 7,,4,. Now let T be a tree obtained from T € 7 by operation Q3. We
have n* = n'* 4+ 2. Let us observe that «(T*) = a(T"™) + 1. If T" € T4z, then using Lemma 4 we get
a(T*)=a(T*)+1=n"/2+1=(n"*+2)/2 =n"/2. By Lemma 4 we have T' € T5,4. [

Now we prove that if the 2-outer-independent domination number of a tree equals the number of leaves

plus half of the remaining vertices, then the tree belongs to the family 7.
Lemma 6 Any tree T € Tpay is in 7.

Proof. We prove the result by the induction on the number n of vertices of T'. If it has only two vertices,
then T'= P, € 7. Now assume that n > 3. Assume that the result is true for every tree T” of order n’ < n.

Assume that some support vertex of T, say x, has degree at least three. Let y be a leaf adjacent to x.
Let T/ =T —y. We have T"* = T*. Lemma 4 implies that T" € 7,,4.. By the inductive hypothesis we have
T’ € T. The tree T can be obtained from T’ by operation @;. Thus T € 7. Henceforth, we can assume
that every support vertex of T has degree two.

We now root T' at a vertex r of maximum eccentricity. Let ¢ be a leaf at maximum distance from r, v be
the parent of ¢, and u be the parent of v in the rooted tree. By T, let us denote the subtree induced by
a vertex x and its descendants in the rooted tree T

First assume that dp(u) > 3. Let = be a descendant of u other than v. Since every support vertex
of T has degree two, the vertex x is not a leaf. Thus it is a support vertex. Let T = T — T,. Let us
observe that n* = n* — 1 and a(T"*) = o(T*) — 1. Using Lemma 4 we get o(T"*) = a(T*) -1 =n*/2 -1
=(n*+1)/2—1=n""/2—-1/2 <n*/2. This is a contradiction as T"* is bipartite graph.

Now assume that dr(u) = 2. Let T = T — T,. Let us observe that n”* = n* — 2 and a(T"*) = «(T*) — 1.
Now we get a(T*) = a(T*) =1 =n*/2—-1= (n* —2)/2 = n"*/2. Lemma 4 implies that T’ € T,q,. By the



inductive hypothesis we have T' € 7. The tree T can be obtained from 7" by operation Oy. Thus T € 7.

As a consequence of Lemmas 3, 5 and 6 we get the final result, an upper bound on the 2-outer-independent

domination number of a tree together with the characterization of the extremal trees.

Theorem 7 If T is a nontrivial tree of order n with | leaves, then v§*(T) < (n +1)/2 with equality if and
only if T € T.
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