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Abstract

A set D of vertices in an isolate-free graph G is a total dominating set
of G if every vertex is adjacent to a vertex in D. The total domination
number of G, denoted by γt(G), is the minimum cardinality of a total
dominating set of G. We note that γt(G) ≥ 2 for every isolate-free graph
G. A non-isolating set of vertices in G is a set of vertices whose removal
from G produces an isolate-free graph. The γ−t -stability of G, denoted by
st−γt(G), is the minimum size of a non-isolating set of vertices in G whose
removal decreases the total domination number. We show that if G is
a connected graph with maximum degree ∆ satisfying γt(G) ≥ 3, then
st−γt(G) ≤ 2∆−1, and we characterize the infinite family of trees achieving
the equality in this upper bound. The total domination stability of G,
denoted by stγt(G), is the minimum size of a non-isolating set of vertices
in G whose removal changes the total domination number. We prove that
if G is a connected graph with maximum degree ∆ satisfying γt(G) ≥ 3,
then stγt(G) ≤ 2∆− 1.
Keywords: total domination, total domination stability.
AMS Subject Classification: 05C05, 05C69.

1 Introduction

The concept of domination stability in graphs was introduced in 1983 by Bauer,
Harary, Nieminen and Suffel [1] and has been studied, for example, in [13]. We
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introduce and study the total version of domination stability. We demonstrate
that these two versions differ significantly.

A dominating set of a graph G with vertex set V (G) is a set D of vertices of G
such that every vertex in V (G) \D is adjacent to a vertex in D. The domination
number of G, denoted by γ(G), is the minimum cardinality of a dominating set
of G. The concept of domination critical graphs is well studied in the literature
(see, for example, [1, 2, 3, 4, 6, 15, 16]). We focus on domination stability
in graphs. As defined in [1], the γ−-stability of G, denoted by γ−(G), is the
minimum number of vertices whose removal decreases the domination number,
and the γ+-stability of G, denoted by γ+(G), is the minimum number of vertices
whose removal increases the domination number. The domination stability of G,
denoted by stγ(G), is the minimum number of vertices whose removal changes
the domination number. Thus, stγ(G) = min{γ−(G), γ+(G)}.

An isolate-free graph is a graph with no isolated vertex. A total dominating
set, abbreviated TD-set, of an isolate-free graph G is a set D of vertices of G
such that every vertex in V (G) is adjacent to at least one vertex in D. The total
domination number of G, denoted by γt(G), is the minimum cardinality of a TD-
set of G. A non-isolating set of vertices in G is a set S of vertices such that
G− S is an isolate-free graph, where G− S denotes the graph obtained from G
by removing S and all edges incident with vertices in S. Let NI(G) denote
the set of all non-isolating sets of vertices of G. The concept of total domination
critical graphs is well studied in the literature (see, for example, [5, 7, 10, 11, 17].)
Chapter 11 in the book [12] is devoted to total domination critical graphs.

Unless otherwise stated, let G be an isolate-free graph. The γ−t -stability of
G, denoted by st−γt(G), is the minimum size of a non-isolating set of vertices in
G whose removal decreases the total domination number. Thus,

st−γt(G) = min
S∈NI(G)

{|S| : γt(G− S) < γt(G)}.

The γ+
t -stability of G, denoted by st+γt(G), is the minimum size of a non-

isolating set of vertices in G whose removal increases the total domination num-
ber, if such a set exists. In this case,

st+γt(G) = min
S∈NI(G)

{|S| : γt(G− S) > γt(G)}.

If no such non-isolating set exists whose removal increases the total domina-
tion number, we define st+γt(G) =∞. As a trivial example, we have st−γt(P7) = 2
while st+γt(P7) =∞.

The total domination stability of G, denoted by stγt(G), is the minimum size
of a non-isolating set of vertices in G whose removal changes the total domination
number. Thus,

stγt(G) = min
S∈NI(G)

{|S| : γt(G− S) 6= γt(G)} = min{st−γt(G), st+γt(G)}.
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2 Preliminaries

For notation and graph theory terminology we generally follow [12]. The order
of G is denoted by n(G) = |V (G)|, and the size of G is denoted by m(G) =
|E(G)|. We denote the degree of a vertex v in the graph G by dG(v). A vertex of
degree 0 is called an isolated vertex. The maximum (minimum) degree among the
vertices of G is denoted by ∆(G) (δ(G), respectively). The open neighborhood
of v is NG(v) = {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v
is NG[v] = NG(v) ∪ {v}. For a set S ⊆ V , its open neighborhood is the set
NG(S) =

⋃
v∈S NG(v), and its closed neighborhood is the set NG[S] = NG(S)∪ S.

If the graph G is clear from the context, then we simply write d(v), N(v), N [v],
N(S) and N [S] instead of dG(v), NG(v), NG[v], NG(S) and NG[S], respectively.

For a subset S of vertices of G, the subgraph induced by S is denoted by
G[S]. The subgraph obtained from G by removing all vertices in S and all edges
incident with vertices in S is denoted by G− S. The set S is an open packing if
the open neighborhoods of vertices in S are pairwise disjoint. The open packing
number of G, denoted by ρ0(G), is the maximum cardinality of an open packing
in G.

A non-trivial graph is a graph of order at least 1. A path and a cycle on n
vertices are denoted by Pn and Cn, respectively. A complete graph on n vertices
is denoted by Kn, while a complete bipartite graph with partite sets of size l and
m is denoted by Kl,m. A star is the graph K1,k, where k ≥ 1. For r, s ≥ 1, a
double star S(r, s) is the tree with exactly two vertices that are not leaves, one
of which has r leaf-neighbors and the other s leaf-neighbors.

A rooted tree T distinguishes one vertex r called the root. For each vertex
v 6= r of T , the parent of v is the neighbor of v on the unique (r, v)-path, while a
child of v is any other neighbor of v. The set of children of v is denoted by C(v).
A descendant of v is a vertex u 6= v such that the unique (r, u)-path contains
v, while an ancestor of v is a vertex u 6= v that belongs to the (r, v)-path in T .
In particular, every child of v is a descendant of v, while the parent of v is an
ancestor of v.

The distance between two vertices u and v in a connected graph G, denoted
by dG(u, v), is the length of a shortest (u, v)-path in G. The maximum distance
among all pairs of vertices of G is the diameter of G, denoted by diam(G). We
use the notation [k] = {1, . . . , k}.

Following the original paper of Bauer et al. [1], we consider the null graph K0

(also called the order-zero graph), which is the unique graph having no vertices
and hence has order zero, as a graph. With this consideration, the domination
stability of a non-trivial graph is always defined. In particular, stγ(Kn) = n
since γ(Kn) = 1 and removing all vertices from the complete graph on n vertices
produces the null graph with domination number zero. Bauer et al. [1] established
the following fundamental upper bound on the domination stability of a graph.
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Theorem 1 ([1]) For every nontrivial graph G we have stγ(G) ≤ δ(G) + 1.

As an immediate consequence of Theorem 1, we have the following result
observed by Jafari Rad et al. [13].

Observation 2 ([13]) If G � Kn is a graph of order n, then stγ(G) ≤ n− 1.

Considering the null graph K0 as a graph, we have the following observation.

Observation 3 If G is a graph of order n and γt(G) = 2, then st−γt(G) = n.

In view of Observation 3, it is only of interest for us to consider isolate-free
graphs G with γt(G) ≥ 3 when determining st−γt(G). With this assumption, we
note that if u and v are adjacent vertices in G, then the set S = V (G) \ {u, v} is
a non-isolating set of vertices in G and γt(G − S) = γt(K2) = 2 < γt(G). Thus,
the γ−t -stability of an isolate-free graph G with γt(G) ≥ 3 is at most two less
than its order. We state this formally as follows.

Observation 4 If G is a graph of order n and γt(G) ≥ 3, then st−γt(G) ≤ n− 2.

Rall [14] was the first to prove that the total domination number and the
open packing number of any non-trivial tree are equal.

Theorem 5 ([14]) For every non-trivial tree T we have γt(T ) = ρo(T ).

3 Main results

Our immediate aim is to establish upper bounds on the total domination stability
and the γ−t -stability of a graph. We first establish an upper bound on the γ−t -
stability of a tree. Further, we characterize the trees with maximum possible
γ−t -stability. For this purpose, we define a family of trees as follows.

For integers k ≥ 2 and ∆ ≥ 2, let Tk,∆ be a graph obtained from the disjoint
union of k double stars S(∆− 1,∆− 1) by adding k− 1 edges between the leaves
of these double stars so that the resulting graph is a tree with maximum degree
∆. Let Fk,∆ be the family of all such trees Tk,∆, and let

F∆ =
⋃
k≥2

Fk,∆.

For ∆ = 2, let H∆ = {Pn : n ≡ 3 (mod 4) and n ≥ 7}. For integers ∆ ≥ 3
and ∆ ≥ k ≥ 2, let Hk,∆ be a graph obtained from the disjoint union of k double
stars S(∆− 1,∆− 1) by selecting one leaf from each double star and identifying
these k leaves into one new vertex. Let Hk,∆ be the family of all such trees Hk,∆,
and let

H∆ =
⋃
k≥2

Hk,∆.

We shall prove the following result.
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Theorem 6 If T is a tree with maximum degree ∆ satisfying γt(T ) ≥ 3, then
the following hold:

(a) st−γt(T ) ≤ 2∆− 1, with equality if and only if T ∈ F∆;
(b) stγt(T ) ≤ 2∆− 2, and this bound is sharp for all ∆ ≥ 2.

Recall that by Theorem 1, for every nontrivial graph G, we have stγ(G) ≤
δ(G)+1. In particular, stγ(T ) ≤ 2 for every nontrivial tree T . This is in contrast
to the total domination stability, where for any given ∆ ≥ 2, every tree T in the
family H∆ has maximum degree ∆ and satisfies stγt(T ) = 2∆ − 2 (as shown in
Lemma 16). Thus, total domination stability differs significantly from domination
stability.

The following result establishes an upper bounds on the total domination
stability of a general graph in terms of its maximum degree.

Theorem 7 If G is a connected graph with maximum degree ∆ satisfying γt(G) ≥
3, then stγt(G) ≤ 2∆− 1.

4 Preliminary results

It is well known (see, for example, [12]) that γt(Cn) = γt(Pn) = bn/2c+ dn/4e −
bn/4c for all n ≥ 3. We first determine the γ−t -stability of a path and a cycle.

Proposition 8 For n ≥ 5, if G is a path Pn or a cycle Cn, then

st−γt(G) =


3 when n ≡ 0 (mod 4)
2 when n ≡ 3 (mod 4)
1 when n ≡ 1, 2 (mod 4).

Proof. For n ≥ 5, if G ∼= Pn, then let G be given by v1v2 . . . vn, while if G ∼= Cn,
then let G be given by v1v2 . . . vnv1. Suppose first that n ≡ 2 (mod 4). Thus,
n = 4k + 2 for some k ≥ 1. In this case, γt(G) = 2k + 2. Taking S = {v1}, we
note that γt(G− S) = γt(P4k+1) = 2k + 1 < γt(G), implying that st−γt(G) = 1.

Suppose second that n ≡ 1 (mod 4). Thus, n = 4k + 1 for some k ≥ 1. In
this case, γt(G) = 2k + 1. Taking S = {v1}, we note that γt(G− S) = γt(P4k) =
2k < γt(G), implying that st−γt(G) = 1.

Suppose next that n ≡ 0 (mod 4). Thus, n = 4k for some k ≥ 2. In this case,
γt(G) = 2k. Let S be a non-isolating set of vertices such that γt(G−S) ≤ 2k−1.
Let D be a minimum TD-set of G−S, and so |D| = γt(G−S) ≤ 2k−1. Suppose
that G[D] consists of ` components. Each component of G[D] is a path of order
at least 2, implying that 2k− 1 ≥ |D| ≥ 2` and therefore that ` ≤ k− 1. Further
if P is a (path) component of G[D], then each end of P is adjacent to at most one
vertex of G− S that does not belong to P . Thus, at most two vertices of G− S
that do not belong to the set D are uniquely associated with each component of
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G[D], implying that G−S has order at most |D|+2` ≤ (2k−1)+2(k−1) = 4k−3.
However, G − S has order 4k − |S|, and so |S| ≥ 3. This is true for every non-
isolating set S of vertices of G. Hence, st−γt(G) ≥ 3. Conversely, if we take
S∗ = {v1, v2, v3}, then γt(G−S) = γt(P4k−3) = 2k−1, and so st−γt(G) ≤ |S∗| = 3.
Consequently, st−γt(G) = 3.

Suppose finally that n ≡ 3 (mod 4). Thus, n = 4k − 1 for some k ≥ 2.
In this case, γt(G) = 2k. Let S be a non-isolating set of vertices such that
γt(G − S) ≤ 2k − 1. Proceeding analogously as in the previous case, we show
that G−S has order at most 4k−3. Since G−S has order 4k−1−|S|, we deduce
that |S| ≥ 2, implying that st−γt(G) ≥ 2. Conversely, if we take S∗ = {v1, v2},
then γt(G − S) = γt(P4k−3) = 2k − 1, and so st−γt(G) ≤ |S∗| = 2. Consequently,
st−γt(G) = 2.

Next we determine the γ+
t -stability of a path. For small n ≤ 7 and for n = 10,

no non-isolating set of vertices in a path Pn exists whose removal increases the
total domination number, and hence, by definition, st+γt(Pn) =∞ for such values
of n. It is therefore only of interest to determine the γ+

t -stability of a path Pn,
where n ≥ 8 and n 6= 10.

Proposition 9 For n ≥ 8 and n 6= 10,

st+γt(Pn) =


3 when n ≡ 2 (mod 4);
2 when n ≡ 3 (mod 4);
1 when n ≡ 0, 1 (mod 4).

Proof. Consider a path G ∼= Pn given by v1v2 . . . vn, where n ≥ 8. Suppose
first that n ≡ 3 (mod 4). Thus, n = 4k − 1 for some k ≥ 2. In this case,
γt(G) = 2k. Taking S = {v3, v6}, we note that S is a non-isolating set of vertices
and γt(G−S) = 2γt(P2)+γt(P4k−7) = 4+(2k−3) = 2k+1 > γt(G), implying that
st+γt(Pn) ≤ |S| = 2. Conversely, suppose that S is a non-isolating set consisting
of a single vertex. In this case, G − S contains at most two components. If
G − S is connected, then γt(G − S) = γt(P4k−2) = 2k ≤ γt(G). Suppose that
G − S contains two components. Let Pn1 and Pn2 be the two path components
of G − S, and so γt(G − S) = γt(Pn1) + γt(Pn2). Since n1 + n2 = 4k − 2, either
both n1 and n2 are even or both n1 and n2 are odd. If both n1 and n2 are
even, then we may assume that n1 ≡ 0 (mod 4) and n2 ≡ 2 (mod 4). In this
case, γt(G − S) = n1/2 + (n2 + 2)/2 = 2k. If both n1 and n2 are odd, then
γt(G−S) = (n1 +1)/2+(n2 +1)/2 = 2k. In both cases, γt(G−S) = 2k = γt(G),
implying that st+γt(Pn) > 1. Consequently, st+γt(Pn) = 2.

Suppose second that n ≡ 0 (mod 4). Thus, n = 4k for some k ≥ 2. In this
case, γt(G) = 2k. Taking S = {v3}, we note that S is a non-isolating set of
vertices such that γt(G−S) = γt(P2)+γt(P4k−3) = 2+(2k−1) = 2k+1 > γt(G),
implying that st+γt(Pn) ≤ |S| = 1. Consequently, st+γt(Pn) = 1.
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Suppose next that n ≡ 1 (mod 4). Thus, n = 4k + 1 for some k ≥ 2.
In this case, γt(G) = 2k + 1. Taking S = {v3}, we note that γt(G − S) =
γt(P2) + γt(P4k−2) = 2 + 2k > γt(G), implying that st+γt(Pn) = 1.

Suppose finally that n ≡ 2 (mod 4). Thus, n = 4k + 2 for some k ≥ 3. In
this case, γt(G) = 2k + 2. Suppose that S is a non-isolating set consisting of a
single vertex. In this case, G− S contains at most two components. If G− S is
connected, then γt(G − S) = γt(P4k+1) = 2k + 1 ≤ γt(G). Suppose that G − S
contains two components. Let Pn1 and Pn2 be the two path components of G−S,
and so γt(G− S) = γt(Pn1) + γt(Pn2). Since n1 + n2 = 4k + 1, exactly one of n1

and n2 is odd, say n1. Thus, γt(G−S) ≤ (n1 +1)/2+(n2 +2)/2 = 2k+2 = γt(G).
Suppose that S is a non-isolating set of size 2. In this case, G − S contains

at most three components. If G − S is connected, then γt(G − S) = γt(P4k) =
2k < γt(G).

Suppose that G−S contains two components. Let Pn1 and Pn2 be the two path
components of G− S, and so γt(G− S) = γt(Pn1) + γt(Pn2). Since n1 + n2 = 4k,
either both n1 and n2 are even or both n1 and n2 are odd. If both n1 and n2

are even, then γt(G − S) ≤ (n1 + 2)/2 + (n2 + 2)/2 = 2k + 2. If both n1 and
n2 are odd, then γt(G − S) = (n1 + 1)/2 + (n2 + 1)/2 = 2k + 1. In both cases,
γt(G− S) ≤ γt(G).

Suppose that G− S contains three components. Let Pn1 , Pn2 and Pn3 be the
three path components of G−S, and so γt(G−S) = γt(Pn1) + γt(Pn2) + γt(Pn3).
We note that n1 + n2 + n3 = 4k. A straightforward case analysis shows that,
renaming n1, n2 and n3 if necessary, one of the following cases occur: (i) ni ≡
0 (mod 4) for i ∈ [3], (ii) ni ≡ 2 (mod 4) for i ∈ [2] and n3 ≡ 0 (mod 4), (iii)
n1 ≡ 0 (mod 4), n2 ≡ 1 (mod 4), n3 ≡ 3 (mod 4), (iv) ni ≡ 1 (mod 4) for i ∈ [2]
and n3 ≡ 2 (mod 4), (v) ni ≡ 3 (mod 4) for i ∈ [2] and n3 ≡ 2 (mod 4). If (i)
holds, then γt(G− S) = 2k. If (ii) holds, then γt(G− S) = 2k + 2. If (iii) holds,
then γt(G−S) = 2k+ 1. If (iv) or (v) holds, then γt(G−S) = 2k+ 2. In all five
cases, γt(G− S) ≤ γt(G).

The above implies that if S is an arbitrary non-isolating set of size 1 or
2, then γt(G − S) ≤ γt(G), implying that st+γt(Pn) ≥ 3. Conversely, taking
S = {v3, v6, v9}, we note that S is a non-isolating set of vertices and γt(G −
S) = 3γt(P2) + γt(P4k−7) = 6 + (2k − 3) = 2k + 3 > γt(G), implying that
st+γt(Pn) ≤ |S| = 3. Consequently, st+γt(Pn) = 3.

As an immediate consequence of Propositions 8 and 9, we determine the total
domination stability of a path.

Proposition 10 For n ≥ 5,

stγt(Pn) =

{
2 when n ≡ 3 (mod 4);
1 otherwise.
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As shown in Proposition 8, the γ−t -stability of a path and a cycle of the same
order are equal. This is not always the case for the γ+

t -stability of a path and a
cycle. For example, st+γt(P8) = 1 and st+γt(P14) = 3, while st+γt(C8) = st+γt(C14) =
∞. For small n ≤ 8 and for n ∈ {10, 11, 14}, no non-isolating set of vertices in a
cycle Cn exists whose removal increases the total domination number, and hence,
by definition, st+γt(Cn) =∞ for such values of n. In order for us to determine the
total domination stability of a cycle when n ≥ 5, it suffices for us to establish the
following result on the γ+

t -stability of a cycle.1

Proposition 11 For n ≥ 9 and n /∈ {10, 11, 14}, st+γt(Cn) ≥ 3. Further, the
following hold.

(a) If n ≥ 9 and n ≡ 1 (mod 4), then st+γt(Cn) = 3;
(b) If n ≥ 12 and n ≡ 0 (mod 4), then st+γt(Cn) = 3.

Proof. Consider a cycle G ∼= Cn given by v1v2 . . . vnv1, where n ≥ 9 and n /∈
{10, 11, 14}. Let S be a non-isolating set of vertices of G that increases the total
domination number. If |S| = 1, then γt(G − S) = γt(Pn−1) ≤ γt(Pn) = γt(G), a
contradiction. Hence, |S| ≥ 2. Suppose that |S| = 2. In this case, G−S contains
at most two components. If G − S is connected, then γt(G − S) = γt(Pn−2) ≤
γt(Pn) = γt(G), a contradiction. Hence, G−S contains two components. Let Pn1

and Pn2 be the two path components ofG−S, and so γt(G−S) = γt(Pn1)+γt(Pn2).
Suppose that n ≡ 0 (mod 4). Thus, n = 4k for some k ≥ 3. In this case,

γt(G) = 2k. Since n1 + n2 = 4k − 2, renaming n1 and n2 if necessary, either
n1 ≡ 0 (mod 4) and n2 ≡ 2 (mod 4) or both n1 and n2 are odd. In the former
case, γt(G− S) = n1/2 + (n2 + 2)/2 = 2k, while in the latter case, γt(G− S) =
(n1 + 1)/2 + (n2 + 1)/2 = 2k. In both cases, γt(G− S) ≤ γt(G), a contradiction.

Suppose that n ≡ 1 (mod 4). Thus, n = 4k + 1 for some k ≥ 2. In this case,
γt(G) = 2k + 1. Since n1 + n2 = 4k − 1, exactly one of n1 and n2 is odd, say n1.
Thus, γt(G− S) ≤ (n1 + 1)/2 + (n2 + 2)/2 = 2k + 1 = γt(G), a contradiction.

Suppose that n ≡ 2 (mod 4). Thus, n = 4k + 2 for some k ≥ 4. In this case,
γt(G) = 2k+2. Since n1 +n2 = 4k, either both n1 and n2 are even or both n1 and
n2 are odd. If both n1 and n2 are even, then γt(G−S) ≤ (n1 +2)/2+(n2 +2)/2 =
2k+2. If both n1 and n2 are odd, then γt(G−S) = (n1+1)/2+(n2+1)/2 = 2k+1.
In both cases, γt(G− S) ≤ γt(G), a contradiction.

Suppose that n ≡ 3 (mod 4). Thus, n = 4k + 3 for some k ≥ 3. In this case,
γt(G) = 2k + 2. Since n1 + n2 = 4k + 1, exactly one of n1 and n2 is odd, say n1.
Thus, γt(G − S) ≤ (n1 + 1)/2 + (n2 + 2)/2 = 2k + 2 = γt(G), a contradiction.
Since all the above four cases produce a contradiction, every non-isolating set
S of vertices of G that increases the total domination number satisfies |S| ≥ 3,
implying that st+γt(G) ≥ 3.

1We remark that the result of Proposition 11 can be strengthened to cover all values of
n ≥ 9 and n /∈ {10, 11, 14}. Indeed, if n ≥ 15 and n ≡ 3 (mod 4), then st+γt(Cn) = 4, while if
n ≥ 18 and n ≡ 2 (mod 4), then st+γt(Cn) = 5. We omit the details.

8



Suppose that n ≥ 9 and n ≡ 1 (mod 4). Thus, n = 4k+ 1 for some k ≥ 2. In
this case, γt(G) = 2k+1. Taking S = {v1, v4, v7}, we note that S is a non-isolating
set of vertices and γt(G−S) = 2γt(P2)+γt(P4k−6) = 4+(2k−2) = 2k+2 > γt(G),
implying that st+γt(Cn) ≤ |S| = 3. Consequently, st+γt(Cn) = 3.

Suppose that n ≥ 12 and n ≡ 0 (mod 4). Thus, n = 4k for some k ≥ 3. In
this case, γt(G) = 2k. Taking S = {v1, v4, v7}, we note that S is a non-isolating
set of vertices and γt(G−S) = 2γt(P2)+γt(P4k−7) = 4+(2k−3) = 2k+1 > γt(G),
implying that st+γt(Cn) ≤ |S| = 3. Consequently, st+γt(Cn) = 3.

As a consequence of Propositions 8 and 11, the total domination stability of
a cycle is determined.

Proposition 12 For n ≥ 5,

stγt(Cn) =


3 when n ≡ 0 (mod 4);
2 when n ≡ 3 (mod 4);
1 when n ≡ 1, 2 (mod 4).

We shall need the following lemma.

Lemma 13 If G is a connected isolate-free graph, then G contains a spanning
tree T such that γt(T ) = γt(G).

Proof. Since removing edges from a graph cannot decrease its total domination
number, we note that γt(H) ≥ γt(G) for all isolate-free spanning subgraphs H of
G. In particular, if H = G, then γt(H) = γt(G). Among all spanning, isolate-
free, connected subgraphs H of G satisfying γt(H) = γt(G), let H be chosen to
have minimum size. Let S be an arbitrary minimum TD-set of H.

We show that H is a tree. Suppose, to the contrary, that H is not a tree and
consider a smallest cycle C : v1v2 . . . vkv1 in H. For i ∈ [k], let ei = vivi+1, where
addition is taken modulo k, and so ek = v1vk.

By the minimality of H, the spanning, isolate-free, connected graph H − ei
satisfies γt(H − ei) > γt(G) for each i ∈ [k]. If neither vi nor vi+1 belong to S,
then S is a TD-set of H−ei, implying that γt(G) ≤ γt(H−ei) ≤ |S| = γt(G), or,
equivalently, γt(H − ei) = γt(G), a contradiction. Hence, the set S contains at
least one of vi and vi+1 for all i ∈ [k]. If S contains all vertices on the cycle C, then
S is a TD-set of H−ei for all i ∈ [k], a contradiction. Hence, renaming vertices if
necessary, we may assume that v2 /∈ S. Thus, by our earlier observations, v1 ∈ S
and v3 ∈ S. But then S is a TD-set of H − e1, a contradiction.

We determine next the γ−t -stability of a tree in the family F∆.

Lemma 14 For ∆ ≥ 2, if T ∈ F∆, then st−γt(T ) = 2∆− 1.
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Proof. For k ≥ 2 and ∆ ≥ 2, let T ∈ Fk,∆. We wish to show that st−γt(T ) =
2∆ − 1. If ∆ = 2, then the family Fk,∆ is the family of all paths P4k, where
k ≥ 2. Thus in this case, by Proposition 8, st−γt(T ) = 3 = 2∆−1. Hence, in what
follows we may assume that ∆ ≥ 3, for otherwise the desired result follows. We
proceed by induction on k ≥ 2 to show that if T ∈ Fk,∆, then st−γt(T ) = 2∆− 1.

For the base case, suppose that k = 2, and so T ∈ F2,∆. Thus, T is obtained
from the disjoint union of two double stars T1 and T2, both isomorphic to S(∆−
1,∆ − 1), by adding and edge joining a leaf, x1 say, of T1 and a leaf, x2 say, of
T2. Let ui and vi be the two central vertices of the double star Ti for i ∈ [2],
where vxi is an edge, and so uivixi is a path in Ti. The set {u1, u2, v1, v2} is a
maximum open packing, and so, by Theorem 5, γt(T ) = ρ0(T ) = 4. We note
that diam(T ) = 7.

Let S be a non-isolating set of vertices of T such that γt(T − S) ≤ 3. We
show that |S| ≥ 2∆ − 1. Let D be a minimum TD-set of T − S, and so |D| =
γt(T − S) ≤ 3. We note that the set D induces either a path P2 or a path P3,
implying that T − S is a tree and diam(T − S) ≤ 4. If both u1 and u2 belong
to the tree T − S, then diam(T − S) ≥ 5, a contradiction. Hence, renaming T1

and T2, if necessary, we may assume that u1 ∈ S. If u2 ∈ S, then S contains all
leaf-neighbors of u1 and u2, implying that |S| ≥ 2∆. Hence, we may assume that
u2 /∈ S, and so u2 belongs to the tree T−S. If v1 /∈ S, then since diam(T−S) ≤ 4,
the set S contains all leaf-neighbors of v1 and u2, implying that |S| ≥ 3∆ − 3.
Hence, we may assume that v1 ∈ S, for otherwise |S| ≥ 2∆ − 1, as desired. In
this case, V (T1) \ {x1} ⊆ S, implying that |S| ≥ 2∆− 1. Since S is an arbitrary
non-isolating set of vertices of T such that γt(T − S) ≤ 3, this implies that
st−γt(T ) ≥ 2∆ − 1. Conversely, if we take S = V (T1) \ {x1}, then |S| = 2∆ − 1
and γt(T − S) = 3, and so st−γt(T ) ≤ 2∆ − 1. Consequently, st−γt(T ) = 2∆ − 1.
This establishes the base case when k = 2.

Let k ≥ 3 and assume that if T ′ ∈ Fk′,∆ where 2 ≤ k′ < k, then st−γt(T
′) =

2∆ − 1. Let T ∈ Fk,∆. Thus, T is the graph obtained from the disjoint union
of k double stars T1, T2, . . . , Tk, each isomorphic to S(∆ − 1,∆ − 1), by adding
k − 1 edges between leaves of these double stars so that the resulting graph is a
tree with maximum degree ∆. Let ui and vi be the two central vertices of the
double star Ti for i ∈ [k]. The set ∪ki=1{ui, vi}, for example, is a maximum open
packing of T , and so, by Theorem 5, γt(T ) = ρ0(T ) = 2k.

We define the underlying graph of T as the graph of order k whose vertices
correspond to the k double stars T1, T2, . . . , Tk, and where two vertices in the
underlying graph are adjacent if the corresponding double stars are joined by an
edge in T . Since T is a tree, so too is its underlying graph. Renaming the double
stars T1, T2, . . . , Tk if necessary, we may assume that T1 corresponds to a leaf in
the underlying tree of T and that T1 is joined to T2 by an edge, say x1x2 where
xi ∈ V (Ti) for i ∈ [2]. Further, renaming the vertices ui and vi if necessary, we
may assume that vixi is an edge of T , and so u1v1x1x2v2u2 is a path in T . We note
that x1 has degree 2 in T with v1 and x2 as its neighbors. Let T ′ = T − V (T1).
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Then, T ′ ∈ Fk′,∆ where k′ = k− 1 ≥ 2. Applying the inductive hypothesis to T ′,
we note that st−γt(T

′) = 2∆− 1.
Let S be a non-isolating set of vertices of T such that γt(T − S) ≤ 2k − 1.

Among all such sets, we choose S to have minimum cardinality. We show that
|S| ≥ 2∆− 1. Suppose, to the contrary, that |S| ≤ 2∆− 2.

Let D be a minimum TD-set of T − S, and so |D| = γt(T − S) ≤ 2k − 1.
Let D′ = D ∩ V (T ′) and S ′ = S ∩ V (T ′). Further, let Di = D ∩ V (Ti) and
Si = S ∩ V (Ti) for i ∈ [k].

Suppose that D1 = ∅. In this case, S1 contains all vertices of V (T1), except
possibly for the vertex x1, and so |S| ≥ |S1| ≥ 2∆ − 1, a contradiction. Hence,
|D1| ≥ 1.

Suppose that |D1| = 1. In this case, D1 = {x1} and the set S1 contains all
vertices of V (T1) \ {x1}, except possibly for the vertex v1. Thus, |S1| ≥ 2∆− 2.
By assumption, |S| = 2∆ − 2, implying that |S| = |S1| = 2∆ − 2 and that
S = V (T1) \ {x1, v1}. Thus, the graph T − S is obtained from T ′ by adding the
vertices x1 and v1 and adding the edges x1x2 and x1v1. Let u′2 be a leaf-neighbor
of u2 in the tree T2. By rooting the tree T ′ at the vertex u2, the set {u2, u

′
2} can

be extended to a maximum open packing of T ′ by adding to it two vertices from
each tree Ti, where i ∈ {3, . . . , k}, where from each tree Ti we add to the open
packing the central vertex ui or vi of Ti at maximum distance from u2, together
with a leaf-neighbor of such a selected vertex in Ti. The resulting open packing
of T ′ can be extended further to an open packing of T −S by adding to it v1 and
x1, implying that γt(T − S) = ρ0(T − S) ≥ ρ0(T ′) + 2 = 2(k − 1) + 2 = 2k. This
contradicts the fact that γt(T − S) ≤ 2k − 1. Hence, |D1| ≥ 2.

Suppose that x1 /∈ D1. In this case, S ′ is a non-isolating set of vertices of
T ′. Recall that st−γt(T

′) = 2∆ − 1 and |S ′| ≤ |S| < 2∆ − 1, implying that
γt(T

′ − S ′) ≥ γt(T
′) = 2(k − 1). This in turn implies that γt(T − S) = |D1| +

γt(T
′ − S ′) ≥ 2 + 2(k − 1) = 2k, a contradiction. Hence, x1 ∈ D1.

Suppose that v1 /∈ D1. In this case, S1 contains all ∆− 2 leaf-neighbors of v1.
Moreover since |D1| ≥ 2, the set D1 contains u1 as well as a leaf-neighbor, say u′1,
of u1. We now consider the non-isolating set S∗ = S \S1 of vertices of T . The set
(D \ {u′1}) ∪ {v1} is a TD-set of T − S∗, and so γt(T − S∗) ≤ |D| = γt(T − S) ≤
2k − 1. Thus, S∗ is a non-isolating set of vertices of T such that |S∗| < |S| and
γt(T − S∗) ≤ 2k − 1, contradicting our choice of the set S. Hence, v1 ∈ D1.

Suppose that u1 ∈ D1. In this case, D1 = {u1, v1, x1}. By the minimality
of the set S, this implies that no leaf in T1 belongs to S. Hence, S = S ′ and
|S ′| = |S| ≤ 2∆ − 2. If v2 is a vertex of T − S, then S ′ is a non-isolating set
of vertices of T ′ and D′ ∪ {v2} is a TD-set of T ′ − S ′, implying that |D′| + 1 =
|D′ ∪ {v2}| ≥ γt(T

′ − S ′) ≥ γt(T
′) = 2(k − 1). Thus, |D| = |D1| + |D′| ≥

3 + (2k − 3) = 2k = γt(T ), a contradiction. Therefore, u1 /∈ D1, implying that
D1 = {v1, x1}. Further this implies that S1 contains all ∆ − 1 leaf-neighbors of
u1, and so |S1| ≥ ∆− 1.

This is true for each of the original double stars in T that corresponds to
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a leaf in the underlying tree of T . That is, if Ti is an arbitrary double star in
T that corresponds to a leaf in the underlying tree of T for some i ∈ [k], then
Di = {vi, xi} and |Si| ≥ ∆ − 1. Since the underlying tree of T contains at
least two leaves, this implies that |Si| ≥ ∆ − 1 for at least two different values
of i ∈ [k], say for i1 and i2. If |Di| ≥ 2 for all i ∈ [k], then |D| ≥ 2k, a
contradiction. Hence, |Di3| ≤ 1 for some i3 ∈ [k]. If Ti3 corresponds to a leaf
in the underlying tree of T , then as observed earlier, |Di3 | ≥ 2, a contradiction.
Hence, Ti3 does not corresponds to a leaf in the underlying tree of T , and so i3 is
distinct from i1 and i2. Since |Di3| ≤ 1, we note that neither ui3 nor vi3 belong to
Di3 , implying that at least one of ui3 and vi3 belong to Si3 . Thus, |Si3| ≥ 1. Thus,
|S| ≥ |Si1 |+ |Si2|+ |Si3 | ≥ 2(∆− 1) + 1 = 2∆− 1, contradicting our supposition
that |S| ≤ 2∆ − 2. We deduce, therefore, that |S| ≥ 2∆ − 1, implying that
st−γt(T ) ≥ 2∆− 1.

Conversely, if we take S = V (T1)\{x1}, then S is a non-isolating set of vertices
of T such that |S| = 2∆ − 1 and γt(T − S) = 2k − 1, and so st−γt(T ) ≤ 2∆ − 1.
Consequently, st−γt(T ) = 2∆− 1. This completes the proof of Lemma 14.

The γ+
t -stability of a tree in the family F∆ is considerably less than its γ−t -

stability.

Lemma 15 For ∆ ≥ 2, if T ∈ F∆, then st+γt(T ) ≤ ∆− 1.

Proof. For k ≥ 2 and ∆ ≥ 2, let T ∈ Fk,∆. Thus, T is the graph obtained
from the disjoint union of k double stars T1, T2, . . . , Tk, each isomorphic to S(∆−
1,∆ − 1), by adding k − 1 edges between leaves of these double stars so that
the resulting graph is a tree with maximum degree ∆. We follow the notation
introduced in the proof of Lemma 14. In particular, ui and vi denote the two
central vertices of the double star Ti for i ∈ [k]. Recall that γt(T ) = 2k. As
in the proof of Lemma 14, we may assume that T1 corresponds to a leaf in the
underlying tree of T and that x1x2 is the edge joined T1 and T2, where xi ∈ V (Ti)
for i ∈ [2]. Further, we may assume that v1x1 and x2v2 are edges of T .

Let S be the set of vertices consisting of v1 and its ∆ − 2 leaf-neighbors in
T . Thus, S = NT [v1] \ {u1, x1}. The tree T − S has two components. Let T ′1
and T ′2 be the components of T − S containing u1 and x1, respectively. We note
that T ′1 is isomorphic to a star K1,∆−1, and so γt(T

′
1) = 2. Moreover, T ′2 is the

tree obtained from T by removing all vertices in V (T1) \ {x1}. Let u′2 be a leaf-
neighbor of u2 in the tree T2. Analogously as shown in the proof of Lemma 14,
the set {u2, u

′
2} can be extended to a maximum open packing of T ′ by adding

to it two vertices from each tree Ti, where i ∈ {3, . . . , k}, where from each tree
Ti we add to the open packing the central vertex ui or vi of Ti at maximum
distance from u2, together with a leaf-neighbor of such a selected vertex in Ti.
The resulting open packing of T ′ can be extended further to an open packing of
T ′2 by adding to it the vertex x1, implying that γt(T ′2) = ρ0(T ′2) ≥ 2k − 1. Thus,
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γt(T − S) = γt(T
′
1) + γt(T

′
2) = 2k + 1 > γt(T ). Thus, S is a non-isolating set

of vertices whose removal increases the total domination number, implying that
st+γt(T ) ≤ |S| = ∆− 1.

We determine next the total domination stability of a tree in the family H∆.

Lemma 16 For ∆ ≥ 2, if T ∈ H∆, then stγt(T ) = 2∆− 2.

Proof. If ∆ = 2, then the family H∆ is the family of all paths Pn, where
n ≥ 7 and n ≡ 3 (mod 4). Thus in this case, by Proposition 10, we have
stγt(T ) = 2 = 2∆ − 2. Hence, in what follows we may assume that ∆ ≥ 3, for
otherwise the desired result follows. Thus, the tree T ∈ Hk,∆ for some integer
k where ∆ ≥ k ≥ 2 and is obtained from the disjoint union of k double stars
T1, T2, . . . , Tk, each isomorphic to S(∆−1,∆−1), by selecting one leaf from each
double star and identifying these k leaves into one new vertex, which we call w.
Let ui and vi denote the two central vertices of the double star Ti for i ∈ [k],
where vi is adjacent to w in T , and let D = ∪ki=1{ui, vi}. We note that the set
D is the set of support vertices of T . Every TD-set in T contains all its support
vertices, implying that γt(T ) ≥ |D| = 2k. However, the set of support vertices D
is a TD-set of T , and so γt(T ) ≤ |D| = 2k. Consequently, γt(T ) = 2k, implying
that the set D is the unique minimum TD-set in T .

We show firstly that stγt(T ) ≥ 2∆ − 2. Let S be a minimum non-isolating
set of vertices of T such that γt(T − S) 6= γt(T ) = 2k. Thus, stγt(T ) = |S|. Let
R be a maximum open packing of the tree T − S. The set R contains at most
one neighbor of ui and at most one neighbor of vi in Ti for each i ∈ [k], implying
that |R ∩ V (Ti)| ≤ 2 for all i ∈ [k]. Thus if w /∈ R, then |R| ≤ 2k. Suppose that
w ∈ R. Since S is a minimum non-isolating set of vertices of T , the vertex w is
not isolated in T −S. Renaming vertices if necessary, we may assume that v1 is a
neighbor of w in T −S. Since R is an open packing in T −S, the vertex w is the
only neighbor of v1 that belongs to R. As observed earlier, R contains at most one
neighbor of u1, and so |R ∩ V (T1)| ≤ 1, implying that once again that |R| ≤ 2k.
Hence, ρ0(T −S) = |R| ≤ 2k. Thus, by Theorem 5, γt(T −S) = ρ0(T −S) ≤ 2k.
Since γt(T − S) 6= 2k, this implies that γt(T − S) < 2k.

Since S is a non-isolating set of vertices of T , we note that if S contains a
support vertex of T , then it contains all leaf-neighbors of that support vertex. By
construction of the tree T , the support vertex ui has ∆− 1 leaf-neighbors, while
the support vertex vi has ∆−2 leaf-neighbors for all i ∈ [k]. Thus, if |S∩D| ≥ 2,
then |S| ≥ 2 + 2(∆− 2) = 2∆− 2. Hence, we may assume that |S ∩D| ≤ 1, for
otherwise stγt(T ) = |S| ≥ 2∆− 2, as claimed.

If w ∈ S, then since |S∩D| ≤ 1, the forest T −S contains k components, each
of which requires exactly two vertices to totally dominate, and so γt(T −S) = 2k,
a contradiction. Hence, w /∈ S.

Let W be a minimum TD-set of T − S, and so |W | = γt(T − S) ≤ 2k − 1.
Suppose that w /∈ W . By assumption, |S ∩D| ≤ 1, and so at least one of ui and
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vi belong to T − S for every i ∈ [k]. Thus, since w /∈ W , the set W contains at
least two vertices from V (Ti) in order to totally dominate the vertices of V (Ti)
that belong to T − S, implying that γt(T − S) = |W | ≥ 2k, a contradiction.
Hence, w ∈ W . This in turn implies that at least two vertices of D do not
belong to the set W . We note that all leaf-neighbors of the support vertices that
do not belong to W , belong to the removed set S of vertices. Suppose that at
least two support vertices at distance 2 from w do not belong to W . Renaming
vertices if necessary, we may assume that u1 and u2 do not belong to W . Thus,
the 2(∆ − 1) leaf-neighbors of u1 and u2 belong to S, and so |S| ≥ 2∆ − 2, as
claimed. Hence, we may assume, renaming vertices if necessary, that W contains
all support vertex at distance 2 from w, except possibly for the vertex uk. Thus,
ui ∈ W for each i ∈ [k − 1]. Further, in order to totally dominate the vertex
ui, the set W contains at least one neighbor of ui for each i ∈ [k − 1]. Hence,
|W ∩ V (Ti)| ≥ 2 for all i ∈ [k − 1]. Since w ∈ W and |W | ≤ 2k − 1, this implies
that |W ∩ V (Ti)| = 2 for each i ∈ [k − 1] and that W contains no vertex from
V (Tk). This in turn implies that S contains all vertices of Tk, except possibly for
the vertex vk. Thus, stγt(T ) = |S| ≥ |V (Tk) \ {vk}| = 2∆− 2, as claimed.

Conversely, if we take S = V (Tk)\{vk}, then S is a non-isolating set of vertices
of T such that |S| = 2∆−2 and γt(T−S) = 2k−1, and so stγt(T ) ≤ |S| = 2∆−2.
Consequently, stγt(T ) = 2∆− 2. This completes the proof of Lemma 16.

5 Proof of Theorem 6

We are now in a position to prove Theorem 6. Recall its statement.

Theorem 6. If T is a tree with maximum degree ∆ satisfying γt(T ) ≥ 3, then
the following hold:

(a) st−γt(T ) ≤ 2∆− 1, with equality if and only if T ∈ F∆;
(b) stγt(T ) ≤ 2∆− 2, and this bound is sharp for all ∆ ≥ 2.

Proof. We first prove Part (a). The sufficiency follows from Lemma 14. To
prove the necessity, let T be a tree with maximum degree ∆ satisfying γt(T ) ≥ 3.
Necessarily, ∆ ≥ 2. If ∆ = 2, then G ∼= Pn, where n ≥ 5, and the result follows
from Proposition 8 and Lemma 14, noting that in this case the family Fk,∆ is
the family of all paths P4k, where k ≥ 2. Hence we may assume that ∆ ≥ 3, for
otherwise the desired result follows.

Since γt(T ) ≥ 3, we note that diam(T ) ≥ 4. Let u and r be two vertices
at maximum distance apart in T . Necessarily, u and r are leaves and d(u, v) =
diam(T ). We now root the tree T at the vertex r. Let v be the parent of u, w
the parent of v, x the parent of w, and y the parent of x. If diam(T ) = 4, then
y = r; otherwise, y 6= r.
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Claim 17 If a child of w different from v is a support vertex, then st−γt(T ) ≤ ∆.

Proof. Suppose that v′ is a child of w different from v that is a support vertex.
Let D be a minimum TD-set of T . Necessarily, {v, v′, w} ⊆ D. We now consider
the non-isolating set S of vertices of T consisting of v′ and its children. Thus,
S = C(v′) ∪ {v′} and |S| = dT (v′) ≤ ∆. Since D \ {v} is a TD-set of T − S,
we note that γt(T−S) ≤ |D|−1 = γt(T )−1, implying that st−γt(T ) ≤ |S| ≤ ∆. (�)

By Claim 17, we may assume that every child of w different from v is a
leaf, for otherwise st−γt(T ) < 2∆− 1.

Claim 18 If v or w has degree less than ∆, then st−γt(T ) ≤ 2(∆− 1).

Proof. Suppose that v or w has degree less than ∆. Thus, dT (v)+dT (w) ≤ 2∆−1.
We now consider the non-isolating set S of vertices of T consisting of the vertex
w and all descendants of w. Thus, S consists of v and w and their children; that
is, S = C(v)∪C(w)∪{w}. By supposition, |S| = dT (v) + dT (w)− 1 ≤ 2(∆− 1).
Recall that y is the parent of x. Since (D \{v, w})∪{y} is a TD-set of T −S, we
note that γt(T−S) ≤ |D|−1 = γt(T )−1, implying that st−γt(T ) ≤ |S| ≤ 2(∆−1).
(�)

By Claim 18, we may assume that both v and w have degree ∆, for oth-
erwise st−γt(T ) < 2∆− 1.

Claim 19 If there exists a minimum TD-set of T that contains a neighbor of x
different from w or contains the vertex x, then st−γt(T ) ≤ 2(∆− 1).

Proof. Let D be a minimum TD-set of T . Necessarily, {v, w} ⊂ D. Suppose
that x ∈ D or D contains a neighbor of x different from w. We now consider
the non-isolating set S of vertices of T consisting of all descendants of w. Thus,
S = C(v) ∪ C(w) and |S| = dT (v) + dT (w) − 2 = 2(∆ − 1). If x ∈ D, then let
D′ = D \ {v}. If x /∈ D, then let D′ = (D \ {v, w}) ∪ {x}, noting that in this
case D contains a neighbor of x different from w. In both cases, the set D′ is a
TD-set of T − S, and so γt(T − S) ≤ |D′| = |D| − 1 = γt(T )− 1, implying that
st−γt(T ) ≤ |S| ≤ 2(∆− 1). (�)

By Claim 19, we may assume that no minimum TD-set of T contains the ver-
tex x or contains a neighbor of x different from w, for otherwise st−γt(T ) < 2∆−1.
With this assumption, the degree of x is determined.

Claim 20 dT (x) = 2.

Proof. Suppose that dT (x) ≥ 3. Let w′ be a child of x different from w. If
w′ is a leaf, then x belongs to every minimum TD-set of T , contradicting our
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earlier assumption. If w′ is not a leaf, then either w′ is a support vertex or
each child of w′ is a support vertex. In both cases, the vertex w′ can be chosen
to belong to some minimum TD-set of T , contradicting our earlier assumption. (�)

We now consider the non-isolating set S of vertices of T consisting of all
descendants of x. Thus, S consists of v and w and their children; that is,
S = C(v) ∪ C(w) ∪ {w} and |S| = dT (v) + dT (w) − 1 = 2∆ − 1. Since
(D\{v, w})∪{y} is a TD-set of T−S, we note that γt(T−S) ≤ |D|−1 = γt(T )−1,
implying that st−γt(T ) ≤ |S| = 2∆− 1. This establishes the desired upper bound.

Suppose next that st−γt(T ) = 2∆ − 1. Our earlier Claims 17, 18, 19 and 20
imply that (i) every child of w different from v is a leaf, (ii) both v and w have
degree ∆ in T , and (iii) dT (x) = 2, for otherwise st−γt(T ) < 2∆−1, a contradiction.

We now interchange the roles of the vertices u and r in the tree T , and root
the tree T at the vertex u. In the resulting rooted tree, let vr denote the parent
of r, wr the parent of vr, and xr the parent of wr. Analogously as before, we
deduce that (i), (ii) and (iii) above hold where now v, w and x are replaced
with vr, wr and xr. If x = xr, then the tree T is determined. However, in this
case γt(T ) = 4. Further, if S is the non-isolating set of vertices of T consisting
of the ∆ − 1 leaf-neighbors of v together with the ∆ − 1 leaf-neighbors of vr,
then γt(T − S) = |{w, x, wr}| = 3 < γt(T ), implying that st−γt(T ) < 2∆ − 1, a
contradiction. Hence, x 6= xr.

We now consider the tree T ′ obtained from T by removing x and all its
descendants. The structure of the tree T implies that γt(T ′) ≥ 2 since both vr
and wr are support vertices in T ′. If γt(T ′) = 2, then, since x 6= xr, this implies
that T ′ is isomorphic to a double star S(∆ − 1,∆ − 1) with xr as a leaf in T ′.
In this case, T ∈ T2,∆, and so T ∈ T∆, as desired. Hence, we may assume that
γt(T

′) ≥ 3. Since both vr and wr have degree ∆ in T and their degrees remain
unchanged in T ′, the tree T ′ is a tree with maximum degree ∆, implying that
st−γt(T

′) ≤ 2∆− 1.
Every TD-set of T ′ can be extended to a TD-set of T by adding to it the

vertices v and w, and so γt(T ) ≤ γt(T
′) + 2. Conversely, let D be a minimum

TD-set of T . Since D contains all support vertices of T , we note that {v, w} ⊂ D
and that D contains no leaf-neighbor of v or w. If x ∈ D, then we can replace x
in D by the parent of y in the tree T rooted at r. Hence, the restriction of D to
V (T ′) is a TD-set of T ′, implying that γt(T ′) ≤ |D|−2 = γt(T )−2. Consequently,
γt(T ) = γt(T

′) + 2.
Suppose that st−γt(T

′) < 2∆ − 1. Let S ′ be a minimum non-isolating set of
vertices of T ′ that decreases the total domination number of T ′. Thus, |S ′| <
2∆ − 1 and γt(T

′ − S ′) < γt(T
′). Every minimum TD-set of T ′ − S ′ can be

extended to a TD-set of T by adding to it the vertices v and w, and so γt(T−S ′) ≤
γt(T

′ − S ′) + 2 < γt(T
′) + 2 = γt(T ). Hence, S ′ is a non-isolating set of vertices

of T such that γt(T − S ′) < γt(T
′), and so st−γt(T ) ≤ |S ′| = st−γt(T

′) < 2∆− 1, a
contradiction. Therefore, st−γt(T

′) = 2∆− 1.
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From the above observations, the tree T ′ has maximum degree ∆ and satisfies
γt(T

′) ≥ 3 and st−γt(T
′) = 2∆ − 1. Applying the inductive hypothesis to T ′, the

tree T ′ ∈ F∆. Hence, T ′ is the graph obtained from the disjoint union of k′ ≥ 2
double stars T1, T2, . . . , Tk′ , each isomorphic to S(∆− 1,∆− 1), by adding k′− 1
edges between leaves of these double stars so that the resulting graph is a tree
with maximum degree ∆. We note that γt(T ′) = 2k′ and the 2k′ central vertices
of the k′ double stars used in the construction of T ′ form a minimum TD-set of
T ′. Recall that xy is an edge of T and y ∈ V (T ′).

Suppose that y is a central vertex of one of the k′ double stars in the construc-
tion of T ′. Let S be the non-isolating set of vertices of T consisting of v and all
children of v and w. Thus, |S| = 2∆−2 and the minimum TD-set of T ′ consisting
of the 2k′ central vertices of the k′ double stars of T ′ can be extended to a TD-set
of T −S by adding to it the vertex x, and so γt(T −S) ≤ γt(T

′) + 1 = γt(T )− 1,
implying that st−γt(T ) ≤ |S| = 2∆ − 2, a contradiction. Therefore, y is a leaf in
one of the k′ double stars in the construction of T ′. By definition of the family
F∆, the tree T therefore belongs to the family F∆. This completes the proof of
Part (a).

If T ∈ F∆ for some ∆ ≥ 2, then by Lemmas 14 and 15, stγt(T ) = min{st−γt(T ),
st+γt(T )} ≤ min{2∆− 1,∆− 1} = ∆− 1. If T /∈ F∆ for any ∆ ≥ 2, then by Part
(a), st−γt(T ) ≤ 2∆ − 2, implying that stγt(T ) = min{st−γt(T ), st+γt(T )} ≤ 2∆ − 2.
In both cases, stγt(T ) ≤ 2∆ − 2. This establishes the upper bound in Part (b).
The sharpness of this upper bound for all ∆ ≥ 2 follows from Lemma 16. �

6 Proof of Theorem 7

In this section, we prove Theorem 7. Our proof relies strongly on the results of
Lemma 13 and Theorem 6. Recall the statement of Theorem 7.

Theorem 7. If G is a connected graph with maximum degree ∆ satisfying
γt(G) ≥ 3, then stγt(G) ≤ 2∆− 1.

Proof. Let G be a connected graph satisfying γt(G) ≥ 3 and let ∆ = ∆(G). We
note that ∆ ≥ 2. If ∆ = 2 and G is a path, then G ∼= Pn where n ≥ 5, and
stγt(G) ≤ 2∆ − 2 by Proposition 10. If ∆ = 2 and G is a cycle, then G ∼= Cn
where n ≥ 5, and stγt(G) ≤ 2∆ − 1 by Proposition 12. Hence we may assume
that ∆ ≥ 3, for otherwise the desired result follows.

By Lemma 13, the graph G contains a spanning tree T such that γt(T ) =
γt(G).

Let S be a non-isolating set of vertices in T of minimum size whose removal
decreases the total domination number of T ; that is, γt(T − S) < γt(T ). By
Observation 4, we note that |S| = st−γt(T ) ≤ n − 2. In particular, T − S is not
the null graph, implying that each component of T − S has order at least 2.
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Since adding edges cannot increase the total domination number, γt(G − S) ≤
γt(T −S) < γt(T ) = γt(G). Further, since each component of T −S has order at
least 2, the supergraph G − S of T − S is isolate-free and is not the null-graph.
Thus, S is a non-isolating set of vertices in G whose removal decreases the total
domination number of G, implying that st−γt(G) ≤ |S| = st−γt(T ).

By Theorem 6, st−γt(T ) ≤ 2∆(T )−1. From the observation that ∆(T ) ≤ ∆ =
∆(G), it follows that

stγt(G) = min{st−γt(G), st+γt(G)} ≤ st−γt(G) ≤ st−γt(T ) ≤ 2∆− 1.

This completes the proof of Theorem 7.

We discuss next graphs achieving the upper bound of Theorem 7; that is,
graphs G with maximum degree ∆ and γt(G) ≥ 3 satisfying stγt(G) = 2∆− 1.

By Propositions 10 and 12, if G is a connected graph with maximum degree
∆ = 2 satisfying γt(T ) ≥ 3, then stγt(G) ≤ 2∆ − 1, with equality if and only if
G ∼= Cn, where n ≥ 8 and n ≡ 0 (mod 4). This characterizes the extremal graphs
of Theorem 7 in the case when ∆ = 2. For ∆ ≥ 3, we have yet to characterize
the extremal graphs of Theorem 7.

The upper bound of Theorem 7 cannot be improved when ∆ = 3 or ∆ = 4.
For example, let G3 be the 6-prism C6�K2 which is depicted in Figure 1(a), and
let G4 be the 4-regular graph illustrated in Figure 1(b). The cubic graph G3

satisfies ∆ = 3, γt(G3) = 4 and stγt(G) = 5 = 2∆− 1, while the 4-regular graph
G4 satisfies ∆ = 4, γt(G4) = 4 and stγt(G4) = 7 = 2∆− 1.

(a) G3 (b) G4

Figure 1: The graphs G3 and G4

However we have yet to determine whether the upper bound in Theorem 7
is always achievable for large maximum degree ∆ ≥ 5 and pose the following
problem.

Problem 21 For all fixed ∆ ≥ 2, determine the smallest constant c∆ such that
every connected graph G with γt(G) ≥ 3 and with maximum degree ∆ satisfies
stγt(G) ≤ c∆ ·∆.
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As an immediate consequence of Theorem 7 and our above results, the fol-
lowing holds.

Corollary 22 c2 = 3
2
, c3 = 5

3
, and c4 = 7

4
.

By Theorem 7, for every ∆ ≥ 2, we note that c∆ ≤ 2∆−1
∆

. We close with the
following question.

Question 23 For every ∆ ≥ 2, is it true that c∆ = 2∆−1
∆

?
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