
DEMONSTRATIO MATHEMATICA

Vol. XLV No 1 2012

Marcin Krzywkowski

A LOWER BOUND ON THE DOUBLE

OUTER-INDEPENDENT DOMINATION

NUMBER OF A TREE

Abstract. A vertex of a graph is said to dominate itself and all of its neighbors.
A double outer-independent dominating set of a graph G is a set D of vertices of G such
that every vertex of G is dominated by at least two vertices of D, and the set V (G) \D
is independent. The double outer-independent domination number of a graph G, denoted
by γoi

d (G), is the minimum cardinality of a double outer-independent dominating set of G.
We prove that for every nontrivial tree T of order n, with l leaves and s support vertices we
have γoi

d (T ) ≥ (2n+ l−s+2)/3, and we characterize the trees attaining this lower bound.
We also give a constructive characterization of trees T such that γoi

d (T ) = (2n+ 2)/3.

1. Introduction

Let G = (V,E) be a graph. By the neighborhood of a vertex v of G we
mean the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v,
denoted by dG(v), is the cardinality of its neighborhood. By a leaf we mean
a vertex of degree one, while a support vertex is a vertex adjacent to a leaf.
We say that a subset of V (G) is independent if there is no edge between
every two its vertices.

A vertex of a graph is said to dominate itself and all of its neighbors.
A subset D ⊆ V (G) is a dominating set of G if every vertex of G is domi-
nated by at least one vertex of D, while it is a double dominating set of G
if every vertex of G is dominated by at least two vertices of D. The dom-
ination (double domination, respectively) number of G, denoted by γ(G)
(γd(G), respectively), is the minimum cardinality of a dominating (double
dominating, respectively) set of G. Note that double domination is a type of
k-tuple domination in which each vertex of a graph is dominated at least k
times for a fixed positive integer k. The study of k-tuple domination was ini-
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tiated by Harary and Haynes [3]. For a comprehensive survey of domination
in graphs, see [4, 5].

A subset D ⊆ V (G) is a double outer-independent dominating set, ab-
breviated DOIDS, of G if every vertex of G is dominated by at least two
vertices of D, and the set V (G) \ D is independent. The double outer-
independent domination number of a graph G, denoted by γoid (G), is the
minimum cardinality of a double outer-independent dominating set of G.
A double outer-independent dominating set of G of minimum cardinality
is called a γoid (G)-set. Double outer-independent domination in graphs was
introduced in [6].

Chellali and Haynes [2] proved the following lower bound on the total
domination number of a tree. For every nontrivial tree T of order n with l
leaves we have γt(T ) ≥ (n− l + 2)/2. They also characterized the extremal
trees. Blidia, Chellali, and Favaron [1] established the following lower bound
on the 2-domination number of a tree. For every nontrivial tree T of order
n with l leaves we have γ2(T ) ≥ (n+ l+2)/3. The extremal trees were also
characterized.

We prove the following lower bound on the double outer-independent
domination number of a tree. For every nontrivial tree T of order n, with l
leaves and s support vertices we have γoid (T ) ≥ (2n+ l − s+ 2)/3. We also
characterize the trees attaining this lower bound. We also give a constructive
characterization of trees T such that γoid (T ) = (2n+ 2)/3.

2. Results

Since the one-vertex graph does not have double outer-independent dom-
inating set, in this paper, by a tree we mean only a connected graph with
no cycle, and which has at least two vertices.

We begin with the following two straightforward observations.

Observation 1. Every leaf of a graph G is in every γoid (G)-set.

Observation 2. Every support vertex of a graph G is in every γoid (G)-set.

We show that if T is a nontrivial tree of order n, with l leaves and s
support vertices, then γoid (T ) is bounded below by (2n + l − s + 2)/3. For
the purpose of characterizing the trees attaining this bound we introduce
a family T of trees T = Tk that can be obtained as follows. Let T1 be a path
P2 with vertices labeled x and y, and let A(T1) = {x, y}. Let H be a path
P3 with leaves labeled u and z, and the support vertex labeled w. If k is
a positive integer, then Tk+1 can be obtained recursively from Tk by one of
the following operations.
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• Operation O1: Attach a vertex v by joining it to any support vertex of Tk.
Let A(Tk+1) = A(Tk) ∪ {v}.

• Operation O2: Attach a copy of H by joining u to a vertex of A(Tk) which
has degree at least two. Let A(Tk+1) = A(Tk) ∪ {w, z}.

• Operation O3: Attach a copy of H by joining u to a leaf of Tk which
is the only one leaf among neighbors of its neighbor. Let A(Tk+1) =
A(Tk) ∪ {w, z}.

Now we prove that for every tree T of the family T , the set A(T ) defined
above is a DOIDS of minimum cardinality equal to (2n+ l − s+ 2)/3.

Lemma 3. If T ∈ T , then the set A(T ) defined above is a γoid (T )-set of size

(2n+ l − s+ 2)/3.

Proof. We use the terminology of the construction of the trees T = Tk, the
set A(T ), and the graph H defined above. To show that A(T ) is a γoid (T )-set
of cardinality (2n + l − s + 2)/3 we use the induction on the number k of
operations performed to construct T . If T = T1 = P2, then (2n + l − s
+2)/3 = 2 = γoid (T ). Let k ≥ 2 be an integer. Assume that the result is true
for every tree T ′ = Tk of the family T constructed by k−1 operations. Let n′

mean the order of the tree T ′, l′ the number of its leaves, and s′ the number
of support vertices. Let T = Tk+1 be a tree of the family T constructed by
k operations.

First assume that T is obtained from T ′ by operation O1. We have
n = n′+1. It is easy to see that A(T ) = A(T ′)∪{v} is DOIDS of the tree T .
Of course, γoid (T ) = γoid (T ′) + 1. If T ′ = P2, then l = l′ and s = s′ − 1. We
get γoid (T ) = γoid (T ′) + 1 = (2n′ + l′ − s′ + 2)/3 + 1 = (2n+ l − s+ 2)/3. If
T ′ 6= P2, then l = l′ + 1 and s = s′. Consequently, γoid (T ) = γoid (T ′) + 1 =
(2n′ + l′ − s′ + 2)/3 + 1 = (2n+ l − s+ 2)/3.

Now assume that T is obtained from T ′ by operation O2. We have
n = n′ + 3, l = l′ + 1, and s = s′ + 1. It is easy to see that A(T ) = A(T ′)
∪{w, z} is a DOIDS of the tree T . Let us observe that γoid (T ) = γoid (T ′) + 2.
Consequently, γoid (T ) = γoid (T ′)+2 = (2n′+ l′−s′+2)/3 = (2n+ l−s+2)/3.

Now assume that T is obtained from T ′ by operation O3. We have
n = n′ + 3, l = l′, and s = s′. Similarly as when considering operation O2

we conclude that A(T ) is a DOIDS of the tree T and γoid (T ) = γoid (T ′) + 2.
Consequently, γoid (T ) = γoid (T ′) + 2 = (2n′ + l′ − s′ + 2)/3 + 2 = (2n + l −
s+ 2)/3.

Now we establish the main result, a lower bound on the double outer-
independ-ent domination number of a tree together with the characterization
of the extremal trees.
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Theorem 4. If T is a tree of order n, with l leaves and s support vertices,

then γoid (T ) ≥ (2n+ l − s+ 2)/3 with equality if and only if T ∈ T .

Proof. If diam(T ) = 1, then T = P2. Thus T ∈ T , and by Lemma 3 we have
γoid (T ) = (2n+ l−s+2)/3. Now assume that diam(T ) = 2. Thus T is a star
K1,m. If T = P3, then T ∈ T as it can be obtained from P2 by operation
O1. If T is different than P3, then it is easy to see that T can be obtained
from P3 by a proper number of operations O1. Thus every star T belongs
to the family T , and by Lemma 3 we have γoid (T ) = (2n + l − s + 2)/3.
Now assume that diam(T ) = 3. Thus T is a double star. Observations
1 and 2 imply that every DOIDS of the tree T contains all leaves and all
support vertices. Therefore the set V (T ) is the only one DOIDS of the tree
T . This implies that γoid (T ) = n. We have l = n−2 and s = 2. Consequently,
(2n+l−s+2)/3 = (2n+n−2−2+2)/3 = (3n−2)/3 = n−2/3 < n = γoid (T ),
whence T /∈ T .

Now assume that diam(T ) ≥ 4. Thus the order of the tree T is an integer
n ≥ 5. If T ∈ T , then by Lemma 3 we have γoid (T ) = (2n + l − s + 2)/3.
The result we obtain by the induction on the number n. Assume that the
theorem is true for every tree T ′ of order n′ < n, with l′ leaves and s′ support
vertices.

First assume that some support vertex of T , say x, is adjacent to at least
two leaves. One of them let us denote by y. Let T ′ = T − y. We have
n′ = n − 1, l′ = l − 1, and s′ = s. Of course, γoid (T ′) = γoid (T ) − 1. Now
we get γoid (T ) = γoid (T ′) + 1 ≥ (2n′ + l′ − s′ + 2)/3 + 1 = (2n − 2 + l − 1
−s + 2 + 3)/3 = (2n + l − s + 2)/3. If γoid (T ) = (2n + l − s + 2)/3, then
obviously γoid (T ′) = (2n′ + l′ − s′ + 2)/3. By the inductive hypothesis we
have T ′ ∈ T . The tree T can be obtained from T ′ by operation O1. Thus
T ∈ T . Henceforth, we assume that every support vertex of T is adjacent
to exactly one leaf.

We now root T at a vertex r of maximum eccentricity diam(T ). Let
t be a leaf at maximum distance from r, v be the parent of t, u be the
parent of v, and w be the parent of u in the rooted tree. By Tx let us
denote the subtree induced by a vertex x and its descendants in the rooted
tree T . We distinguish between the following two cases: dT (u) ≥ 3 and
dT (u) = 2.

Case 1. dT (u) ≥ 3. First assume that u has a child b 6= v that is
a support vertex. Let T ′ = T − Tv. We have n′ = n − 2, l′ = l − 1, and
s′ = s − 1. Let D be any γoid (T )-set. By Observations 1 and 2 we have
t, v, b ∈ D. If u ∈ D, then it is easy to observe that D \ {v, t} is a DOIDS of
the tree T ′. Now assume that u /∈ D. We have dT (u) ≥ 3, thus dT ′(u) ≥ 2.
Since V (T ) \ D is independent, every neighbor of u belongs to the set D.
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Let us observe that D \{v, t} is a DOIDS of the tree T ′ as u has at least two
neighbors in D \ {v, t}. Now we conclude that γoid (T ′) ≤ γoid (T )− 2. We get
γoid (T ) ≥ γoid (T ′)+2 ≥ (2n′+l′−s′+2)/3+2 = (2n−4+l−1−s+1+2+6)/3
= (2n+ l − s+ 4)/3 > (2n+ l − s+ 2)/3.

Now assume that v is the only one support vertex among the descendants
of u. Thus u is a parent of a leaf, say x. Let T ′ = T−Tx. We have n′ = n−1,
l′ = l − 1, and s′ = s − 1. Let D be a γoid (T )-set. By Observations 1 and
2 we have x, u, v ∈ D. It is easy to observe that D \ {x} is a DOIDS of
the tree T ′. This implies that γoid (T ′) ≤ γoid (T ) − 1. Now we get γoid (T ) ≥
γoid (T ′) + 1 ≥ (2n′ + l′ − s′ + 2)/3 + 1 = (2n− 2 + l − 1 − s+ 1 + 2 + 3)/3
= (2n+ l − s+ 3)/3 > (2n+ l − s+ 2)/3, whence T /∈ T .

Case 2. dT (u) = 2. The parent of w let us denote by d. Let D be any
γoid (T )-set. By Observations 1 and 2 we have t, v ∈ D. If u /∈ D, then w ∈ D
as V (T )\D is independent. Let T ′ = T −Tu. We have n′ = n−3. It is easy
to see that D \ {v, t} is a DOIDS of the tree T ′. Now assume that u ∈ D.
If w ∈ D, then no neighbor of w besides u belongs to the set D, otherwise
D \ {u} is a DOIDS of the tree T , a contradiction to the minimality of D.
It is easy to observe that D ∪ {d} \ {u, v, t} is a DOIDS of the tree T ′. If
w /∈ D, then it is easy to see that D∪{w}\{u, v, t} is a DOIDS of the tree T ′.
Now we conclude that γoid (T ′) ≤ γoid (T ) − 2. We consider the following two
possibilities: dT (w) = 2 and dT (w) ≥ 3.

First assume that dT (w) = 2. We have l′ = l. If d is adjacent to a leaf
in T , then s′ = s − 1. Consequently, γoid (T ) ≥ γoid (T ′) + 2 ≥ (2n′ + l′ − s′

+2)/3+2 = (2n−6+l−s+1+2+6)/3 = (2n+l−s+3)/3 > (2n+l−s+2)/3.
Now assume that d is not adjacent to any leaf in T . Thus s′ = s. Now we
get γoid (T ) ≥ γoid (T ′) + 2 ≥ (2n′ + l′ − s′ + 2)/3 + 2 = (2n − 6 + l − s + 2
+6)/3 = (2n + l − s + 2)/3. If γoid (T ) = (2n + l − s + 2)/3, then obviously
γoid (T ′) = (2n′ + l′ − s′ +2)/3. By the inductive hypothesis we have T ′ ∈ T .
The tree T can be obtained from T ′ by operation O3. Thus T ∈ T .

Now assume that dT (w) ≥ 3. We have l′ = l − 1 and s′ = s − 1. Now
we get γoid (T ) ≥ γoid (T ′) + 2 ≥ (2n′ + l′ − s′ + 2)/3 + 2 = (2n − 6 + l − 1
−s+ 1+ 2 + 6)/3 = (2n+ l− s+ 2)/3. If γoid (T ) = (2n+ l− s+ 2)/3, then
obviously γoid (T ′) = (2n′ + l′ − s′ + 2)/3. By the inductive hypothesis we
have T ′ ∈ T . The tree T can be obtained from T ′ by operation O3. Thus
T ∈ T .

Since the number of leaves of a tree is greater than or equal to the number
of its support vertices, we get the following corollary.

Corollary 5. For every tree T we have γoid (T ) ≥ (2n+ 2)/3.
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Now we characterize the trees attaining this bound. For this purpose we
introduce a family F of trees T = Tk that can be obtained as follows. Let T1

be a path P2 with vertices labeled x and y, and let B(T1) = {x, y}. Let H
be a path P3 with leaves labeled u and z, and the support vertex labeled w.
If k is a positive integer, then Tk+1 can be obtained recursively from Tk by
one of the following operations.

• Operation X1: Attach a copy of H by joining u to a vertex of B(Tk) which
has degree at least two. Let B(Tk+1) = B(Tk) ∪ {w, z}.

• Operation X2: Attach a copy of H by joining u to a leaf of Tk which
is the only one leaf among neighbors of its neighbor. Let B(Tk+1) =
B(Tk) ∪ {w, z}.

Now we prove that for every tree T of the family F , the set B(T ) defined
above is a DOIDS of minimum cardinality equal to (2n+ 2)/3.

Lemma 6. If T ∈ F , then the set B(T ) defined above is a γoid (T )-set of size

(2n+ 2)/3.

Proof. The definitions of the families T and F imply that F ⊆ T . Thus
T ∈ T . By Lemma 3, the set A(T ) = B(T ) is a γoid (T )-set of size (2n+ l− s
+2)/3. Obviously, for T1 = P2 we have l = s. Let us observe that performing
neither the operation X1 nor the operation X2 disturbs the equality l = s.
Therefore l = s, and consequently, (2n+ l − s+ 2)/3 = (2n+ 2)/3.

Now we prove a lower bound on the double outer-independent domina-
tion number of a tree in terms of the number of vertices, together with the
characterization of the extremal trees.

Theorem 7. If T is a tree of order n, then γoid (T ) ≥ (2n + 2)/3 with

equality if and only if T ∈ F .

Proof. The bound is true by Corollary 5. If T ∈ F , then by Lemma 6 we
have γoid (T ) = (2n+ 2)/3. Now assume that for a tree T we have γoid (T ) =
(2n + 2)/3. The number of leaves of every tree is greater than or equal
to the number of its support vertices, thus l ≥ s. By Theorem 4 we have
γoid (T ) ≥ (2n + l − s + 2)/3. This implies that l = s. We have γoid (T ) =
(2n + 2)/3 = (2n + l − s + 2)/3. By Theorem 4 we have T ∈ T . Suppose
that T is obtained from T1 = P2 in a way such that the operation O1 is
used at least once. Let us observe that l > s as l(P2) = s(P2), the operation
O1 increases l not changing s, and the operations O2 and O3 do not disturb
the equality l = s. This is a contradiction to that l = s. Therefore the
operation O1 was not used to obtain the tree T . Since the operations O2

and O3 are identical to operations X1 and X2, respectively, we conclude that
T ∈ F .
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