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A LOWER BOUND ON THE DOUBLE
OUTER-INDEPENDENT DOMINATION
NUMBER OF A TREE

Abstract. A vertex of a graph is said to dominate itself and all of its neighbors.
A double outer-independent dominating set of a graph G is a set D of vertices of G such
that every vertex of G is dominated by at least two vertices of D, and the set V(G) \ D
is independent. The double outer-independent domination number of a graph G, denoted
by 75%(G), is the minimum cardinality of a double outer-independent dominating set of G.
We prove that for every nontrivial tree T of order n, with [ leaves and s support vertices we
have 73 (T) > (2n-+1—s+2)/3, and we characterize the trees attaining this lower bound.
We also give a constructive characterization of trees T such that 45 (T) = (2n + 2)/3.

1. Introduction

Let G = (V, E) be a graph. By the neighborhood of a vertex v of G we
mean the set Ng(v) = {u € V(G): uwv € E(G)}. The degree of a vertex v,
denoted by dg(v), is the cardinality of its neighborhood. By a leaf we mean
a vertex of degree one, while a support vertex is a vertex adjacent to a leaf.
We say that a subset of V(@) is independent if there is no edge between
every two its vertices.

A vertex of a graph is said to dominate itself and all of its neighbors.
A subset D C V(G) is a dominating set of G if every vertex of G is domi-
nated by at least one vertex of D, while it is a double dominating set of G
if every vertex of G is dominated by at least two vertices of D. The dom-
ination (double domination, respectively) number of G, denoted by ~+(G)
(74(@Q), respectively), is the minimum cardinality of a dominating (double
dominating, respectively) set of G. Note that double domination is a type of
k-tuple domination in which each vertex of a graph is dominated at least k
times for a fixed positive integer k. The study of k-tuple domination was ini-
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tiated by Harary and Haynes [3|. For a comprehensive survey of domination
in graphs, see [4, 5.

A subset D C V(@) is a double outer-independent dominating set, ab-
breviated DOIDS, of G if every vertex of G is dominated by at least two
vertices of D, and the set V(G) \ D is independent. The double outer-
independent domination number of a graph G, denoted by 'ygi(G), is the
minimum cardinality of a double outer-independent dominating set of G.
A double outer-independent dominating set of G of minimum cardinality
is called a 79'(G)-set. Double outer-independent domination in graphs was
introduced in [6].

Chellali and Haynes [2| proved the following lower bound on the total
domination number of a tree. For every nontrivial tree T of order n with [
leaves we have 7;(T) > (n — [ 4 2)/2. They also characterized the extremal
trees. Blidia, Chellali, and Favaron [1] established the following lower bound
on the 2-domination number of a tree. For every nontrivial tree T of order
n with [ leaves we have y2(7T") > (n+ 1+ 2)/3. The extremal trees were also
characterized.

We prove the following lower bound on the double outer-independent
domination number of a tree. For every nontrivial tree T' of order n, with [
leaves and s support vertices we have v5(T) > (2n +1 — s + 2)/3. We also
characterize the trees attaining this lower bound. We also give a constructive
characterization of trees T such that v5'(T) = (2n + 2)/3.

2. Results

Since the one-vertex graph does not have double outer-independent dom-
inating set, in this paper, by a tree we mean only a connected graph with
no cycle, and which has at least two vertices.

We begin with the following two straightforward observations.
OBSERVATION 1. Every leaf of a graph G is in every v5'(G)-set.
OBSERVATION 2. Fvery support vertex of a graph G s in every 'yd"i(G)—set.

We show that if T' is a nontrivial tree of order n, with [ leaves and s
support vertices, then 79 (T) is bounded below by (2n + 1 — s + 2)/3. For
the purpose of characterizing the trees attaining this bound we introduce
a family T of trees T' = T}, that can be obtained as follows. Let T3} be a path
P, with vertices labeled = and y, and let A(T}) = {z,y}. Let H be a path
P; with leaves labeled u and z, and the support vertex labeled w. If k is
a positive integer, then Ty, 1 can be obtained recursively from T} by one of
the following operations.
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e Operation O;: Attach a vertex v by joining it to any support vertex of Tj.
Let A(Tg41) = A(Ty) U {v}.

e Operation Os: Attach a copy of H by joining u to a vertex of A(T}) which
has degree at least two. Let A(Tg41) = A(T)) U{w, z}.

e Operation O3: Attach a copy of H by joining u to a leaf of Ty which
is the only one leaf among neighbors of its neighbor. Let A(Tjy1) =
A(Ty) U {w, z}.

Now we prove that for every tree T' of the family 7, the set A(T") defined
above is a DOIDS of minimum cardinality equal to (2n +1 — s+ 2)/3.

LEMMA 3. IfT € T, then the set A(T) defined above is a v (T)-set of size
2n+1—-s+2)/3.

Proof. We use the terminology of the construction of the trees T' = T}, the
set A(T), and the graph H defined above. To show that A(T) is a y5"(T')-set
of cardinality (2n + 1 — s + 2)/3 we use the induction on the number k of
operations performed to construct 7. If T = 1) = P, then 2n +1 — s
+2)/3 =2 =~%(T). Let k > 2 be an integer. Assume that the result is true
for every tree T” = T}, of the family 7 constructed by k—1 operations. Let n/
mean the order of the tree T”, I’ the number of its leaves, and s’ the number
of support vertices. Let T' = T} be a tree of the family 7 constructed by
k operations.

First assume that T is obtained from 7" by operation ;. We have
n=n'+1. It is easy to see that A(T) = A(T")U{v} is DOIDS of the tree T
Of course, Y9(T) = 5(T") + 1. If T = Py, then | =’ and s = s’ — 1. We
get Y3 (T) =73 (T +1=C2n +U' - +2)/3+1=2n+1—-5+2)/3. If
T' # Py, then | =1'"+ 1 and s = s'. Consequently, v7(T) =~v5(T") + 1 =
e+ - +2)/3+1=02n+1-s+2)/3.

Now assume that T is obtained from 7" by operation O5. We have
n=n"4+3,1=0I41,and s = ¢ + 1. It is easy to see that A(T) = A(T")
U{w, z} is a DOIDS of the tree T. Let us observe that v5(T') = v5/(T") + 2.
Consequently, 75/(T) = Y3 (T")+2 = (2n'+1'—s'+2)/3 = (2n+1—s+2)/3.

Now assume that T is obtained from 7’ by operation O3. We have
n=n'+3,1=10 and s = s'. Similarly as when considering operation O
we conclude that A(T) is a DOIDS of the tree T and 75/(T) = v5/(T") + 2.
Consequently, 75(T) = Y3(T") +2= 20 +1' = s’ +2)/3+2 = (2n+1 —
S+ 2)/3. u

Now we establish the main result, a lower bound on the double outer-
independ-ent domination number of a tree together with the characterization
of the extremal trees.
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THEOREM 4. IfT is a tree of order n, with I leaves and s support vertices,
then v3'(T) > (2n 41 — s + 2)/3 with equality if and only if T € T.

Proof. If diam(T") = 1, then T'= P». Thus T € T, and by Lemma 3 we have
Y5(T) = (2n+1—s+2)/3. Now assume that diam(7) = 2. Thus T is a star
Kim. If T = P53, then T € T as it can be obtained from P, by operation
O1. If T is different than Ps, then it is easy to see that T can be obtained
from P; by a proper number of operations ;. Thus every star T" belongs
to the family 7, and by Lemma 3 we have v3(T) = (2n +1 — s + 2)/3.
Now assume that diam(7) = 3. Thus T is a double star. Observations
1 and 2 imply that every DOIDS of the tree T contains all leaves and all
support vertices. Therefore the set V(T) is the only one DOIDS of the tree
T. This implies that v9(T") = n. We have | = n—2 and s = 2. Consequently,
(2n+1—s+2)/3 = (2n+n—2-2+42)/3 = (3n—2)/3 =n—2/3 < n =~v3(T),
whence T' ¢ T.

Now assume that diam(7") > 4. Thus the order of the tree 7" is an integer
n > 5. If T € T, then by Lemma 3 we have v7(T) = (2n+ 1 — s + 2)/3.
The result we obtain by the induction on the number n. Assume that the
theorem is true for every tree T” of order n’ < n, with I’ leaves and s’ support
vertices.

First assume that some support vertex of T, say x, is adjacent to at least
two leaves. One of them let us denote by y. Let T/ = T — y. We have
n=n-1,1=10-1,and s =s. Of course, Y (T") = v9(T) — 1. Now
we get Y5(T) = v3(T)+1> 20 +1 =8 +2)/3+1=(2n—-2+1—1
—s+2+3)/3=02n+1—s+2)/3. Ifv%(T) = (2n+1— s +2)/3, then
obviously v5/(T") = (2n' +1' — s’ +2)/3. By the inductive hypothesis we
have T" € T. The tree T can be obtained from 7" by operation O;. Thus
T € T. Henceforth, we assume that every support vertex of T is adjacent
to exactly one leaf.

We now root T at a vertex r of maximum eccentricity diam(7"). Let
t be a leaf at maximum distance from r, v be the parent of ¢, u be the
parent of v, and w be the parent of w in the rooted tree. By T, let us
denote the subtree induced by a vertex x and its descendants in the rooted
tree T. We distinguish between the following two cases: dr(u) > 3 and
dr(u) = 2.

Case 1. dr(u) > 3. First assume that u has a child b # v that is
a support vertex. Let T/ =T —T,. We have n’ =n -2, 1' =1-1, and
s’ = s—1. Let D be any 79'(T)-set. By Observations 1 and 2 we have
t,v,b € D. If u € D, then it is easy to observe that D\ {v,t} is a DOIDS of
the tree T'. Now assume that u ¢ D. We have dr(u) > 3, thus dp/(u) > 2.
Since V(T') \ D is independent, every neighbor of u belongs to the set D.
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Let us observe that D\ {v,t} is a DOIDS of the tree T” as u has at least two
neighbors in D\ {v,t}. Now we conclude that v/(T") < y9/(T) — 2. We get
YF(T) > 5T +2 > (2n/ +1'—s'+2)/3+2 = (2n—4+1—1—5+1+2+6)/3
=2n+1l-s5s4+4)/3>2n+1—-s+2)/3.

Now assume that v is the only one support vertex among the descendants
of u. Thus u is a parent of a leaf, say x. Let T/ =T —T,. We have n’ = n—1,
I!'=1—1,and s = s— 1. Let D be a 73 (T)-set. By Observations 1 and
2 we have z,u,v € D. It is easy to observe that D \ {z} is a DOIDS of
the tree T7'. This implies that v9(T") < 79(T) — 1. Now we get v9(T) >
VT +1> @2 +1 -8 +2)/3+1=02n—2+1—-1—-s+1+2+3)/3
=@2n+1-5+3)/3>2n+1—-5+2)/3, whence T' ¢ T.

Case 2. dr(u) = 2. The parent of w let us denote by d. Let D be any
75 (T)-set. By Observations 1 and 2 we have t,v € D. If u ¢ D, then w € D
as V(T')\ D is independent. Let 7" =T —T,,. We have n’ = n—3. Tt is easy
to see that D\ {v,t} is a DOIDS of the tree T'. Now assume that u € D.
If w € D, then no neighbor of w besides u belongs to the set D, otherwise
D\ {u} is a DOIDS of the tree T, a contradiction to the minimality of D.
It is easy to observe that D U {d} \ {u,v,t} is a DOIDS of the tree 7". If
w ¢ D, then it is easy to see that DU{w}\ {u, v, t} is a DOIDS of the tree T".
Now we conclude that v5(T") < v5(T') — 2. We consider the following two
possibilities: dp(w) = 2 and dp(w) > 3.

First assume that dp(w) = 2. We have I’ = I. If d is adjacent to a leaf
in T, then s’ = s — 1. Consequently, Y5(T) > v5(T") +2 > (2n/ + ' — &'
42)/342 = (2n—6+1—s+1+2+46)/3 = (2n+1—s5+3)/3 > (2n+1—s+2)/3.
Now assume that d is not adjacent to any leaf in 7. Thus s’ = s. Now we
get Y9(T) >y (T")+2> (2n' 41— +2)/3+2=2n—6+1—s+2
+6)/3=02n+1—-s5+2)/3. f y3(T) = (2n+ 1 — s + 2)/3, then obviously
YG(T") = (2n' +1' — s’ +2)/3. By the inductive hypothesis we have T € T.
The tree T can be obtained from 7" by operation O3. Thus T' € T.

Now assume that dp(w) > 3. We have I’ =1—1 and s’ = s — 1. Now
we get Y9(T) > 9 (T")+2> 20 +1' = +2)/3+2=(2n—6+1—1
—54+1+246)/3=02n+1—-5+2)/3. If v3(T) = (2n+1— 5+ 2)/3, then
obviously v5/(T") = (2n/ +1' — ' +2)/3. By the inductive hypothesis we
have 7" € T. The tree T can be obtained from 7" by operation O3. Thus
TeT. n

Since the number of leaves of a tree is greater than or equal to the number
of its support vertices, we get the following corollary.

COROLLARY 5. For every tree T we have v5(T) > (2n + 2)/3.
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Now we characterize the trees attaining this bound. For this purpose we
introduce a family F of trees T' = T}, that can be obtained as follows. Let T}
be a path P, with vertices labeled x and y, and let B(Ty) = {z,y}. Let H
be a path P53 with leaves labeled u and z, and the support vertex labeled w.
If k£ is a positive integer, then Ty can be obtained recursively from T} by
one of the following operations.

e Operation Xj: Attach a copy of H by joining u to a vertex of B(T}) which
has degree at least two. Let B(Tj41) = B(T}) U{w, z}.

e Operation Xy: Attach a copy of H by joining u to a leaf of Ty which
is the only one leaf among neighbors of its neighbor. Let B(Ty4+1) =
B(Ty) U{w, z}.

Now we prove that for every tree T of the family F, the set B(T") defined
above is a DOIDS of minimum cardinality equal to (2n + 2)/3.

LEMMA 6. If T € F, then the set B(T) defined above is a v5'(T)-set of size
(2n +2)/3.

Proof. The definitions of the families 7 and F imply that F C 7. Thus
T € T. By Lemma 3, the set A(T) = B(T) is a v5'(T)-set of size (2n+1—s
+2)/3. Obviously, for 71 = P» we have [ = s. Let us observe that performing
neither the operation A7 nor the operation A5 disturbs the equality [ = s.
Therefore | = s, and consequently, (2n+1—s+2)/3=(2n+2)/3. =

Now we prove a lower bound on the double outer-independent domina-
tion number of a tree in terms of the number of vertices, together with the
characterization of the extremal trees.

THEOREM 7. If T is a tree of order n, then v3'(T) > (2n + 2)/3 with
equality if and only if T € F.

Proof. The bound is true by Corollary 5. If T' € F, then by Lemma 6 we
have v5'(T) = (2n + 2)/3. Now assume that for a tree T we have v3'(T) =
(2n + 2)/3. The number of leaves of every tree is greater than or equal
to the number of its support vertices, thus [ > s. By Theorem 4 we have
Y(T) > (2n + 1 — s +2)/3. This implies that [ = s. We have 5/(T) =
(2n+2)/3 =(2n+1— s+ 2)/3. By Theorem 4 we have T' € T. Suppose
that T is obtained from 77 = P, in a way such that the operation O; is
used at least once. Let us observe that [ > s as I(P2) = s(P»), the operation
01 increases [ not changing s, and the operations Oy and O3 do not disturb
the equality I = s. This is a contradiction to that [ = s. Therefore the
operation (O7 was not used to obtain the tree T'. Since the operations Qs
and O3 are identical to operations X7 and Xs, respectively, we conclude that
TeF. n
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