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Abstract

For a graph G = (V,E), a subset D ⊆ V (G) is a dominating set if every
vertex of V (G)\D has a neighbor inD. The domination number of G is the
minimum cardinality of a dominating set of G. The domination stability,
or just γ-stability, of a graph G is the minimum number of vertices whose
removal changes the domination number. We show that the γ-stability
problem is NP-hard even when restricted to bipartite graphs. We obtain
several bounds, exact values and characterizations for the γ-stability of a
graph, and we characterize the trees with stγ(T ) = 2.
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1 Introduction

Let G be a graph. A subset D ⊆ V (G) is a dominating set of G if every vertex of
V (G) \D has a neighbor in D. The domination number of G, denoted by γ(G),
is the minimum cardinality of a dominating set of G. A dominating set of G
of minimum cardinality is called a γ(G)-set. For a comprehensive survey of
domination in graphs, see [7].
A domination-critical (domination-super critical, respectively) vertex in a graph

G is a vertex whose removal decreases (increases, respectively) the domination
number. One of important problems in domination theory is to determine graphs
in which every vertex is critical, see for example [1, 2, 6, 9, 10]. Much have been
also written about graphs with no critical vertex, see [3, 4, 8].
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Bauer et al. [1] introduced the concept of domination stability in graphs.
The domination stability, or just γ-stability, of a graph G is the minimum number
of vertices whose removal changes the domination number. The γ−-stability
of G, denoted by γ−(G), is defined as the minimum number of vertices whose
removal decreases the domination number, and the γ+-stability of G, denoted
by γ+(G), is defined as the minimum number of vertices whose removal increases
the domination number. We denote the γ-stability of G by stγ(G). Thus the
domination stability of a graph G is stγ(G) = min{γ−(G), γ+(G)}.
The open neighborhood of a vertex v of G is the setNG(v) = {u ∈ V (G) : uv ∈

E(G)}. The closed neighborhood of v is NG[v] = NG(v) ∪ {v}. For a subset
S ⊆ V (G), we define NG(S) = ∪v∈SNG(v) and NG[S] = ∪v∈SNG[v]. The private
neighborhood of a vertex v ∈ S is pnG(v, S) = {u ∈ V (G) : NG(u) ∩ S = {v}}.
Each vertex in pnG(v, S) is called a private neighbor of v. The external private
neighborhood epn(v, S) of v with respect to S consists of those private neighbors
of v in V (G) \ S. Thus epn(v, S) = pn(v, S) \ S. The degree of a vertex v,
that is, the cardinality of its open neighborhood, is denoted by dG(v). By a
leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent
to a leaf. We say that a support vertex is strong (weak, respectively) if it is
adjacent to at least two leaves (exactly one leaf, respectively). The maximum
(minimum, respectively) degree among all vertices of G is denoted by∆(G) (δ(G),
respectively). The distance between two vertices of a graph is the number of edges
in a shortest path connecting them. The eccentricity of a vertex is the greatest
distance between it and any other vertex. The diameter of a graph G, denoted
by diam(G), is the maximum eccentricity among all vertices of G. The complete
graph on n vertices we denote by Kn. The path (cycle, respectively) on n vertices
we denote by Pn (Cn, respectively). Let T be a tree, and let v be a vertex of T .
We say that v is adjacent to a path Pn if there is a neighbor of v, say x, such
that a subtree resulting from T by removing the edge vx is a path Pn in which
the vertex x is a leaf. By a star we mean a connected graph in which exactly one
vertex has degree greater than one. Double star is a graph obtained from a star
by joining a positive number of vertices to one of the leaves. Let uv be an edge
of a graph G. By subdividing the edge uv we mean removing it, and adding a
new vertex, say x, along with two new edges ux and xv. By contracting the edge
uv we mean replacing uv and the vertices u and v with a new vertex adjacent to
all neighbors of u or v in G. If S is a subset of V (G), then we denote by G[S]
the subgraph of G induced by the vertices of S.
It can be easily seen that if G is a disconnected graph with components

G1, G2, . . . , Gk, then stγ(G) = min{stγ(G1), stγ(G2), . . . , stγ(Gk)}. Hence we
only study connected graphs.
For a graph G, let ρ(G) = min{|epnG(v, S)| : v ∈ S, S is a γ(G)-set}.
Bauer et al. [1] obtained the following necessary and sufficient condition for

a graph to have a domination-critical vertex.
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Proposition 1 ([1]) A graph G has a domination-critical vertex if and only if
ρ(G) = 0.

The following upper bound is known for the γ-stability of any graph.

Proposition 2 ([1]) For every graph G we have stγ(G) ≤ δ(G) + 1.

We show that the γ-stability problem is NP-hard even when restricted to
bipartite graphs. We obtain several bounds, exact values and characterizations
for the γ-stability of a graph, and we characterize the trees with stγ(T ) = 2.

2 Complexity

This section concerns the NP-hardness of the γ-stability decision problem.

DOMINATION STABILITY PROBLEM
INSTANCE: A graph G = (V,E) and the domination number γ(G).
QUESTION: Is stγ(G) > 1?

Dettlaff et al. [5] studied the complexity of determining domination sub-
division numbers of graphs. The domination subdivision number sd(G) of a
graph G is the minimum number of edges in G that must be subdivided (where
an edge can be subdivided only once) in order to increase the domination num-
ber. Dettlaff et al. proved that the decision problem for domination subdivision
number is NP-hard even for bipartite graphs (see Theorem 1 of [5]). Their proof
was performed by a transformation from 3-SAT and usage of a gadget. With a
similar proof using the same gadget and a transformation from 3-SAT, we can
obtain the following result.

Theorem 3 The domination stability problem is NP-hard even for bipartite graphs.

Since the class of graphs with stγ(G) > 1 is a subclass of graphs with no
critical vertex, we have the following result.

Theorem 4 The decision problem for determining graphs with no critical vertex
is NP-hard even for bipartite graphs.

3 Exact values

In this section we determine the domination stability for some classes of graphs.

Observation 5 If G is a star or a double star, then stγ(G) = 1.
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Observation 6 For complete bipartite graphs Km,n with 2 ≤ m ≤ n we have
stγ(Km,n) = m− 1.

Observation 7 We have γ(Pn) = γ(Cn) = ⌊(n+ 2)/3⌋.

First we investigate the γ-stability of paths.

Proposition 8 For paths Pn we have stγ(Pn) = 2 if n ≡ 2 (mod 3), and
stγ(Pn) = 1 otherwise.

Proof. First assume that n ≡ 0 (mod 3). Let us observe that γ(Pn− v) = γ(Pn)
+1, where v is a support vertex. Consequently, stγ(Pn) = 1. Next assume that
n ≡ 1 (mod 3). If v is a leaf, then γ(Pn − v) = γ(Pn) − 1, and consequently,
stγ(Pn) = 1. Now assume that n = 3k+2 for some integer k. Using Observation
7 we get γ(Pn) = k + 1. Let v be an arbitrary vertex of Pn. We show that
the removal of v does not change the domination number. If v is a leaf, then
γ(Pn − v) = γ(Pn−1) = k + 1 = γ(Pn). Now assume that the degree of v is 2.
Let Pn1 and Pn2 be the components of Pn − v. Without loss of generality we
may assume that either n1 ≡ 0 (mod 3) and n2 ≡ 1 (mod 3), or n1 ≡ 2 (mod 3)
and n2 ≡ 2 (mod 3). In the first case we get γ(Pn − v) = γ(Pn1) + γ(Pn2) =
⌊(n1 + 2)/3⌋ + ⌊(n2 + 2)/3⌋ = n1/3 + (n2 + 2)/3 = (n + 1)/3 = k + 1 = γ(Pn).
In the second case we similarly obtain γ(Pn − v) = γ(Pn). We conclude that
stγ(Pn) ≥ 2. Now, Proposition 2 implies that stγ(Pn) = 2.

Next we investigate the γ-stability of cycles.

Proposition 9 We have stγ(Cn) = i if n ≡ i (mod 3) for i = 1, 2, while
stγ(Cn) = 3 if n ≡ 0 (mod 3).

Proof. First assume that n = 3k+1 for some integer k. Then for any vertex v we
have γ(Cn − v) = γ(Pn−1) = k = γ(Cn)− 1, and thus stγ(Cn) = 1. Now assume
that n = 3k+2. For any vertex v we have γ(Cn− v) = γ(Pn−1) = k+1 = γ(Cn).
Thus stγ(Cn) ≥ 2. Now γ(Cn − u− v) = γ(Pn−2) = k = γ(Cn)− 1, where u and
v are two adjacent vertices. This implies that stγ(Cn) = 2. Finally assume that
n = 3k. It is easy to observe that the removal of any vertex does not change
the domination number. Since Cn − v = Pn−1 and by Proposition 8 we have
stγ(Pn−1) = 2, we conclude that stγ(Cn) = 3.

4 Bounds

In this section we present several sharp bounds and characterizations for the
domination stability of a graph.

4



Proposition 10 If G is a graph of order n, then stγ(G) ≤ n with equality if and
only if G = Kn.

Proof. The bound for an arbitrary graph is obvious. Clearly, stγ(Kn) = n. Now
if G ̸= Kn, then δ(G) < n− 1 and using Proposition 2 we get stγ(G) < n.

Theorem 11 For any graph G with γ(G) ≥ 2 we have stγ(G) ≤ ⌊n/γ(G)⌋,
and this bound is sharp.

Proof. Let D be a γ(G)-set, and let x be a vertex of D with minimum number of
private neighbors in V (G) \D. Then the removal of x and its private neighbors
in V (G) \ D decreases the domination number, which implies that stγ(G) ≤
⌊n/γ(G)⌋. To see the sharpness, consider a cycle Cn, where n ≡ 2 (mod 3).

Theorem 12 ([7]) For every connected graph G ̸= K1 we have γ(G) ≤ n/2 with
equality if and only if G is the cycle C4 or the corona H ◦K1 for some connected
graph H.

It can be easily seen that stγ(G) = 1 if γ(G) = n/2 and G ̸= K2.

Proposition 13 If γ ≥ 2 and 1 ≤ k < 2γ − 2, then there is no connected graph
G of order n with γ(G) = γ and stγ(G) = n− k.

Proof. Suppose that G is a connected graph with γ(G) ≥ 2 and stγ(G) = n− k.
Using Theorem 12 we get n > kn/2(γ(G)− 1) ≥ kγ(G)/(γ(G)− 1). This implies
that n− k = stγ(G) > n/γ(G), contradicting Theorem 11.

We now prove that the domination stability of no graph is one less than its
order.

Proposition 14 There is no graph G of order n with stγ(G) = n− 1.

Proof. Suppose that G is a graph of order n with stγ(G) = n − 1. Proposition
13 implies that γ(G) = 1. Let x be a universal vertex of G. From stγ(G) = n− 1
we obtain that there is no pair of non-adjacent vertices in NG(x). Consequently,
G = Kn. But then stγ(G) = n, a contradiction.

Proposition 15 For every integers n and k such that 1 ≤ k ≤ n and k ̸= n− 1
there exists a graph G of order n with stγ(G) = k.
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Proof. We construct a graph Gk,n from a complete graph Kk with vertices
v1, v2, . . . , vk by adding n − k new vertices u1, u2, . . . , un−k together with new
edges viuj, 1 ≤ i ≤ k, 1 ≤ j ≤ n− k. It can be easily verified that the removal of
any subset of k− 1 vertices of Gk,n does not change the domination number. On
the other hand, γ(Gk,n − v1 − v2 − . . .− vk) = n− k ̸= 1. Thus stγ(Gk,n) = k.

We have the following characterization of graphs with domination stability
two less than the order.

Proposition 16 For a graph G we have stγ(G) = n−2 if and only if G = Gn−2,n.

Proof. It was already seen that stγ(Gn−2,n) = n − 2. Now let G be a graph
of order n with stγ(G) = n − 2. Theorem 11 implies that γ(G) = 1. Clearly,
G ̸= Kn. Let y and z be two non-adjacent vertices of G. If there is a vertex
x ∈ V (G) \ {y, z} such that x /∈ NG(y) ∩NG(z), then the removal of x, y and z
yields that stγ(G) < n − 2, a contradiction. Thus every vertex of V (G) \ {y, z}
is adjacent to both y and z. If there are two non-adjacent vertices x1 and x2 in
V (G) \ {y, z}, then similarly we obtain stγ(G) < n− 2, which is a contradiction.
Thus the graph induced by V (G)\{y, z} is complete. Consequently, G = Gn−2,n.

Theorem 17 There is no forbidden induced subgraph characterization for graphs
G of order n with stγ(G) = k, where 1 ≤ k ≤ n/γ(G).

Proof. Let H be a graph of order m. For any vertex v ∈ V (H), we identify v
with a vertex of a complete graph Kk+1, to obtain a graph G. Note that G has
order m(k + 1). One can verify that γ(G) = m and stγ(G) = k.

We have the following upper bound on the domination stability of a graph
with domination number at least two.

Proposition 18 For any graph G with γ(G) ≥ 2 we have stγ(G) ≤ min{δ(G)
+1, n− δ(G)− 1}.

Proof. Let D be a γ(G)-set. If there is a vertex x ∈ D such that epn(x,D) = ∅,
then x is a domination-critical vertex and stγ(G) = 1. Thus assume that for
every vertex x ∈ D we have epn(x,D) ̸= ∅. Let v ∈ D, and let A be the set
of private neighbors of v in V (G) \D. Then γ(G[A ∪ {v}]) = 1 < γ(G). Using
Proposition 2 we get stγ(G) ≤ min{δ(G) + 1, n− δ(G)− 1}.

We next give Nordhaus-Gaddum type inequalities for the sum of the domina-
tion stabilities of a graph and its complement. First note that if γ(G) = 1, then
stγ(G) = 1, and thus we obtain the following bound, which is sharp for complete
graphs.
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Observation 19 If G is a graph with γ(G) = 1 or γ(G) = 1, then stγ(G)
+stγ(G) ≤ n+ 1, and this bound is sharp.

Theorem 20 If G is a graph with γ(G) ≥ 2 and γ(G) ≥ 2, then stγ(G)+stγ(G)
≤ n− 1, and this bound is sharp.

Proof. If n is odd, then using Theorem 11 we get stγ(G)+ stγ(G) ≤ (n− 1)/2+
(n − 1)/2 = n − 1. Thus assume that n is even. Using Proposition 18 we get
stγ(G) + stγ(G) ≤ min{δ(G) + 1, n− δ(G)− 1}+min{δ(G) + 1, n− δ(G)− 1} ≤
n/2 + n/2 = n. Suppose now that stγ(G) + stγ(G) = n. This implies that
δ(G) = δ(G) = n/2 − 1, and consequently, ∆(G) = ∆(G) = n/2. If x is
a vertex of maximum degree in G, then |V (G) \ NG[x]| = n/2 − 1. Clearly,
γ(G[NG[x]]) = 1 < γ(G). This implies that stγ(G) ≤ |V (G) \NG[x]| = n/2− 1.
Similarly we get stγ(G) ≤ n/2 − 1. Consequently, stγ(G) + stγ(G) ≤ n − 2. To
see the sharpness, consider a cycle C5.

5 Trees

It follows from Proposition 2 that stγ(T ) ∈ {1, 2}, for any tree T . In this section
we present a constructive characterization of trees T with stγ(T ) = 2. For this
purpose we introduce a family T of trees T = Tk that can be obtained as fol-
lows. Let T1 be a path P2. If k is a positive integer, then Tk+1 can be obtained
recursively from Tk by one of the following operations.

• Operation O1: Attach a path P2 by joining one of its vertices to a vertex
of Tk adjacent to at least two support vertices of degree two.

• Operation O2: Attach a path P5 by joining the vertex of minimum eccen-
tricity to any vertex of Tk.

• Operation O3: Attach a path P3 by joining one of its leaves to a vertex of
Tk, which is a leaf or a support vertex or is adjacent to a path P3.

We now prove that the γ-stability of every tree of the family T equals two.

Lemma 21 If T ∈ T , then stγ(T ) = 2.

Proof. We use the induction on the number k of operations performed to con-
struct the tree T . If T = T1 = P2, then obviously stγ(T ) = 2. Let k be a positive
integer. Assume that the result is true for every tree T ′ = Tk of the family T con-
structed by k− 1 operations. Let T = Tk+1 be a tree of the family T constructed
by k operations.
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First assume that T is obtained from T ′ by operation O1. The vertex to which
is attached P2 we denote by x. Let v1v2 be the attached path. Let v1 be joined to
x. Let ab and cd denote paths P2 adjacent to x and different from v1v2. Let x be
adjacent to a and c. Let D′ be a γ(T ′)-set. It is easy to see that D′∪{v1} is a DS
of the tree T . Thus γ(T ) ≤ γ(T ′) + 1. Now let D be a γ(T )-set that contains all
support vertices. We have v1, a ∈ D. It is easy to observe that D\{v1} is a DS of
the tree T ′. Therefore γ(T ′) ≤ γ(T )− 1. This implies that γ(T ) = γ(T ′)+1. We
now show that stγ(T ) = 2. On the contrary, suppose that stγ(T ) = 1. Let v be
a vertex of T such that γ(T − v) ̸= γ(T ). Because of the similarity of the paths
v1v2, ab and cd, without loss of generality we may assume that v ̸= v1, v2, a, b. Let
D′ be a γ(T ′ − v)-set. It is easy to see that D′ ∪ {v1} is a DS of the graph T − v.
Thus γ(T − v) ≤ γ(T ′ − v) + 1. Now let D be a γ(T − v)-set that contains all
support vertices. Let us observe that D \ {v1} is a DS of the graph T ′ − v as the
vertex x is still dominated. Therefore γ(T ′−v) ≤ γ(T −v)−1. This implies that
γ(T−v) = γ(T ′−v)+1. We now get γ(T ′−v) = γ(T−v)−1 ̸= γ(T )−1 = γ(T ′).
Consequently, stγ(T ′) = 1. This is a contradiction, and hence stγ(T ) = 2.
Now assume that T is obtained from T ′ by operation O2. The vertex to

which is attached P5 we denote by x. Let v1v2v3v4v5 be the attached path.
Thus v3 is joined to x. It is not very difficult to verify that γ(T ) = γ(T ′) + 2.
Suppose that stγ(T ) = 1. Let v be a vertex of T such that γ(T − v) ̸= γ(T ).
Let us observe that v /∈ {v2, v3, v4}. Assume that v ∈ {v1, v5}, say v = v1.
Obviously, γ(T − v1) ≤ γ(T ), and consequently, γ(T − v1) < γ(T ). Let D
be a γ(T − v1)-set that contains all support vertices. Notice that x /∈ D, as
otherwise D ∪ {v2} \ {v3} is a DS of the tree T , a contradiction to γ(T ) >
γ(T − v1). Let us observe that D ∪ {v2} \ {v3} is a DS of the graph T − x. Thus
γ(T − x) ≤ γ(T − v1). Since stγ(T ′) = 1, we have γ(T ′ − x) = γ(T ′). We now
get γ(T − v1) ≥ γ(T − x) = γ(T ′ − x∪P5) = γ(T ′ ∪P5) = γ(T ), a contradiction.
This implies that v ∈ V (T ′). It is easy to observe that γ(T − v) = γ(T ′ − v) + 2.
We now get γ(T ′ − v) = γ(T − v) − 2 ̸= γ(T ) − 2 = γ(T ′). This implies that
stγ(T

′) = 1, a contradiction. Consequently, stγ(T ) = 2.
Now assume that T is obtained from T ′ by operation O3. The vertex to which

is attached P3 we denote by x. Let v1v2v3 be the attached path. We first prove
that there exists a γ(T ′)-set that contains the vertex x. If x is a support vertex,
then the claim is obvious. Now assume that x is adjacent to a path P3, say abc.
Let a and x be adjacent. Since stγ(T ′) = 2, we have γ(T ′ − b) = γ(T ′). Let us
observe that every γ(T ′ − b)-set D is a γ(T ′)-set as the vertex b is dominated by
c. Since x is a support vertex of the graph T ′ − b, we may assume that x ∈ D.
Now assume that x is a leaf of the tree T ′. The neighbor of x we denote by
y. Since stγ(T ′) = 2, we have γ(T ′ − y) = γ(T ′). Let D be a γ(T ′ − y)-set
that contains all support vertices. Clearly, D ∪ {x} \ {v1} is a γ(T ′)-set. We
now conclude that there exists a γ(T ′)-set that contains the vertex x. Let D′

be a γ(T ′)-set. It is easy to see that D′ ∪ {v2} is a DS of the tree T . Thus
γ(T ) ≤ γ(T ′) + 1. Now let D be a γ(T )-set that contains all support vertices,
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and does not contain the vertex v1. Observe that D \ {v2} is a DS of the tree T ′.
Therefore γ(T ′) ≤ γ(T ) − 1. This implies that γ(T ) = γ(T ′) + 1. Now suppose
that stγ(T ) = 1. Let v be a vertex of T such that γ(T − v) ̸= γ(T ). Clearly,
γ(T − v1) = γ(T ′) + γ(P2) = γ(T ′) + 1 = γ(T ). Thus v ̸= v1. Let D be a
γ(T − v)-set. If v = v2, then v3 ∈ D. It is easy to see that D is a DS of the tree
T , and consequently, γ(T ) ≤ γ(T − v). Now let D′ be a γ(T ′)-set that contains
the vertex x. Let us observe that D′∪{v3} is a DS of the graph T −v2. Therefore
γ(T − v) ≤ γ(T ′) + 1 = γ(T ), and consequently, γ(T − v) = γ(T ), which is a
contradiction. Thus v ̸= v2. Now assume that v = v3. Clearly, γ(T − v) ≤ γ(T ).
If γ(T − v) < γ(T ), then by Proposition 1 there is a γ(T )-set D such that v3 ∈ D
and epn(v3, D) = ∅. We may assume that v2 /∈ D and v1 ∈ D. If x ∈ D, then
D ∪ {v2} \ {v1, v3} is a DS of the tree T of cardinality less than |D|, which is a
contradiction. Thus x /∈ D. Now, D ∪ {x} \ {v1, v3} is a γ(T ′)-set containing
x, and x has no private neighbor in V (T ′) \D, a contradiction to Proposition 1.
Thus we may assume that v ∈ V (T ′). Clearly, γ(T − v) = γ(T ′ − v) + 1. Hence
stγ(T

′) = 1, a contradiction. Therefore stγ(T ) = 2.

We now prove that if the γ-stability of a tree equals two, then the tree belongs
to the family T .

Lemma 22 Let T be a tree. If stγ(T ) = 2, then T ∈ T .

Proof. If diam(T ) = 0, then T = P1. We have stγ(P1) = 1. If diam(T ) = 1,
then T = P2 ∈ T . Now assume that diam(T ) ∈ {2, 3}. Thus T is a star or
a double star. It is not difficult to observe that stγ(T ) = 1. Now assume that
diam(T ) ≥ 4. Thus the order n of the tree T is at least five. We obtain the result
by the induction on the number n. Assume that the lemma is true for every tree
T ′ of order n′ < n.
First assume that some support vertex of T , say x, is strong. Let y and

z be leaves adjacent to x. Let T ′ = T − x. Let D′ be a γ(T ′)-set. We have
y, z ∈ D′. It is easy to observe that D′ ∪ {x} \ {y, z} is a DS of the tree T . Thus
γ(T ) ≤ γ(T ′)− 1, and consequently, γ(T ′) > γ(T ). This implies that stγ(T ) = 1,
a contradiction. Thus every support vertex of T is weak.
We now root T at a vertex r of maximum eccentricity diam(T ). Let t be a

leaf at maximum distance from r, v be the parent of t, u be the parent of v, and
w be the parent of u in the rooted tree. By Tx we denote the subtree induced by
a vertex x and its descendants in the rooted tree T .
Assume that dT (u) ≥ 3. Let y be a child of u other than v. First assume that

y is a leaf. Let T ′ = T − t. Let D be a γ(T )-set that contains all support vertices.
Let us observe that D \ {v} is a DS of the tree T ′. Therefore γ(T ′) ≤ γ(T )− 1.
This implies that stγ(T ) = 1, a contradiction.
Thus every child of u is a support vertex of degree two. The leaf adjacent

to y we denote by z. First assume that dT (u) ≥ 4. Let T ′ = T − Tv. Let
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D′ be a γ(T ′)-set. It is easy to see that D′ ∪ {v} is a DS of the tree T . Thus
γ(T ) ≤ γ(T ′)+1. Now let D be a γ(T )-set that contains all support vertices. Let
us observe that D \ {v} is a DS of the tree T ′. Therefore γ(T ′) ≤ γ(T )− 1. This
implies that γ(T ) = γ(T ′) + 1. We now show that stγ(T ′) = 2. On the contrary,
suppose that stγ(T ′) = 1. Let x be a vertex of T ′ such that γ(T ′ − x) ̸= γ(T ′).
Clearly, γ(T − x) ≤ γ(T ′ − x) + 1. Now let D be a γ(T − x)-set that contains
all support vertices. Let us observe that D \ {v} is a DS of the graph T ′ − x.
Therefore γ(T ′ − x) ≤ γ(T − x) − 1. Consequently, γ(T − x) = γ(T ′ − x) + 1.
We now get γ(T − x) = γ(T ′ − x) + 1 ̸= γ(T ′) + 1 = γ(T ), a contradiction to
stγ(T ) = 2. Therefore stγ(T ′) = 2. By the inductive hypothesis we have T ′ ∈ T .
The tree T can be obtained from T ′ by operation O1. Thus T ∈ T .
Now assume that dT (u) = 3. Let T ′ = T−Tu. Let D′ be a γ(T ′)-set. It is easy

to observe that D′∪{v, y} is a DS of the tree T . Thus γ(T ) ≤ γ(T ′)+2. Now let
D be a γ(T )-set that contains all support vertices, and does not contain the vertex
u. Observe that D \ {v, y} is a DS of the tree T ′. Therefore γ(T ′) ≤ γ(T ) − 2.
This implies that γ(T ) = γ(T ′)+2. We now show that stγ(T ′) = 2. Suppose that
stγ(T

′) = 1. Let x be a vertex of T ′ such that γ(T ′ − x) ̸= γ(T ′). Let us observe
that γ(T − x) = γ(T ′ − x)+ 2. We now get γ(T − x) = γ(T ′ − x)+ 2 ̸= γ(T ′)+ 2
= γ(T ), a contradiction to stγ(T ) = 2. Therefore stγ(T ′) = 2. By the inductive
hypothesis we have T ′ ∈ T . The tree T can be obtained from T ′ by operation
O2. Thus T ∈ T .
Now assume that dT (u) = 2. First assume that there is a child of w, say k,

such that the distance of w to the most distant vertex of Tk is two. It suffices
to consider only the possibility when Tk is a path P2, say kl. Assume that there
exists a γ(T )-set that contains the vertex w. Let D be such a set. We can assume
that v, k ∈ D. Let T ′ = T − l. Let us observe that D \ {k} is a DS of the tree
T ′. Therefore γ(T ′) ≤ γ(T )− 1. Consequently, γ(T ′) ̸= γ(T ). Now assume that
no γ(T )-set contains the vertex w. Let T ′′ = T − v. Let D′′ be a γ(T ′′)-set that
contains all support vertices. Clearly, t ∈ D′′ as t is an isolated vertex. Let us
observe that D′′ ∪ {v} \ {t} is a DS of the tree T . Since no γ(T )-set contains the
vertex w, the set D′′ ∪ {v} \ {t} is not minimum. Therefore γ(T ) ≤ γ(T ′′) − 1.
Consequently, γ(T ′′) ̸= γ(T ). We now conclude that stγ(T ) = 1, a contradiction.
Now assume that there is no child of w, say k, such that the distance of w to

the most distant vertex of Tk is two. Let T ′ = T − Tu. Let D′ be a γ(T ′)-set. It
is easy to see that D′ ∪ {v} is a DS of the tree T . Thus γ(T ) ≤ γ(T ′) + 1. Now
let D be a γ(T )-set that contains all support vertices, and does not contain the
vertex u. Observe that D\{v} is a DS of the tree T ′. Therefore γ(T ′) ≤ γ(T )−1.
This implies that γ(T ) = γ(T ′) + 1. We now show that stγ(T ′) = 2. Suppose
that stγ(T ′) = 1. Let x be a vertex of T ′ such that γ(T ′ − x) ̸= γ(T ′). Clearly,
γ(T−x) = γ(T ′−x)+1. We now get γ(T−x) = γ(T ′−x)+1 ̸= γ(T ′)+1 = γ(T ), a
contradiction to stγ(T ) = 2. Therefore stγ(T ′) = 2. By the inductive hypothesis
we have T ′ ∈ T . Let us observe that the tree T can be obtained from T ′ by
operation O3. Thus T ∈ T .
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As an immediate consequence of Lemmas 21 and 22, we have the following
characterization of trees with γ-stability equaling two.

Theorem 23 Let T be a tree. Then stγ(T ) = 2 if and only if T ∈ T .

6 Open problems

Theorem 4 states that the decision problem for determining graphs with no criti-
cal vertex is NP-hard even for bipartite graphs. A graph is domination dot-critical
if contracting any edge decreases the domination number. A graph is domination
bicritical if the removal of any pair of vertices decreases the domination num-
ber. There are still several open problems on determining graphs with no critical
vertex, which are domination dot-critical or domination bicritical, see [3, 4].

Problem 24 Determine the complexity issue of domination dot-critical graphs
(domination bicritical graphs) with no critical vertex.

Problem 25 Characterize all graphs achieving the bound in Theorem 11.
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