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Abstract. We provide an algorithm for listing all minimal double dom-
inating sets of a tree of order n in time O(1.3248n). This implies that
every tree has at most 1.3248n minimal double dominating sets. We also
show that this bound is tight.
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1 Introduction

Let G = (V,E) be a graph. The order of a graph is the number of its vertices.
By the neighborhood of a vertex v of G we mean the set NG(v) = {u ∈ V (G)
:uv ∈ E(G)}. The degree of a vertex v, denoted by dG(v), is the cardinality of
its neighborhood. By a leaf we mean a vertex of degree one, while a support
vertex is a vertex adjacent to a leaf. We say that a support vertex is strong
(weak, respectively) if it is adjacent to at least two leaves (exactly one leaf,
respectively). The distance between two vertices of a graph is the number of
edges in a shortest path connecting them. The eccentricity of a vertex is the
greatest distance between it and any other vertex. The diameter of a graph
G, denoted by diam(G), is the maximum eccentricity among all vertices of G.
A path on n vertices we denote by Pn.

A vertex of a graph is said to dominate itself and all of its neighbors. A sub-
set D ⊆ V (G) is a dominating set of G if every vertex of G is dominated by at
least one vertex of D, while it is a double dominating set of G if every vertex
of G is dominated by at least two vertices of D. A dominating (double domi-
nating, respectively) set D is minimal if no proper subset of D is a dominating
(double dominating, respectively) set of G. A minimal double dominating set is
abbreviated as mdds. Double domination in graphs was introduced by Harary
and Haynes [6]. For a comprehensive survey of domination in graphs, see [7, 8].

Observation 1 Every leaf of a graph G is in every DDS of G.

⋆ Research fellow at the Department of Mathematics, University of Johannesburg,
South Africa.

⋆⋆ Faculty of Electronics, Telecommunications and Informatics, Gdansk University of
Technology, Poland. Research partially supported by the Polish National Science
Centre grant 2011/02/A/ST6/00201.



II

Observation 2 Every support vertex of a graph G is in every DDS of G.

One of the typical questions in graph theory is how many subgraphs of a given
property a graph on n vertices can have. For example, the famous Moon and
Moser theorem [12] says that every graph on n vertices has at most 3n/3 maximal
independent sets.

Combinatorial bounds are of interest not only on their own, but also because
they are used for algorithm design as well. Lawler [11] used the Moon-Moser
bound on the number of maximal independent sets to construct an (1 + 3

√
3)n ·

nO(1) time graph coloring algorithm, which was the fastest one known for twenty-
five years. For an overview of the field, see [5].

Fomin et al. [4] constructed an algorithm for listing all minimal dominating
sets of a graph on n vertices in time O(1.7159n). They also presented graphs (n/6
disjoint copies of the octahedron) having 15n/6 ≈ 1.5704n minimal dominating
sets. This establishes a lower bound on the running time of an algorithm for
listing all minimal dominating sets of a given graph.

The number of maximal independent sets in trees was investigated in [13].
Couturier et al. [3] considered minimal dominating sets in various classes of
graphs. The authors of [9] investigated the enumeration of minimal dominating
sets in graphs.

Bród and Skupień [1] gave bounds on the number of dominating sets of a tree.
They also characterized the extremal trees. The authors of [2] investigated the
number of minimal dominating sets in trees containing all leaves.

In [10] an algorithm was given for listing all minimal dominating sets of a tree
of order n in time O(1.4656n). This implies that every tree has at most 1.4656n

minimal dominating sets. An infinite family of trees for which the number of
minimal dominating sets exceeds 1.4167n was also given. This establishes a lower
bound on the running time of an algorithm for listing all minimal dominating
sets of a given tree.

We provide an algorithm for listing all minimal double dominating sets of
a tree of order n in time O(1.3248n). This implies that every tree has at most
1.3248n minimal double dominating sets. We also show that this bound is tight.

2 Results

We describe a recursive algorithm which lists all minimal double dominating
sets of a given input tree. We prove that the running time of this algorithm
is O(1.3248n), implying that every tree has at most 1.3248n minimal double
dominating sets.

Theorem 3 Every tree T of order n has at most αn minimal double dominating
sets, where α ≈ 1.32472 is the positive solution of the equation x3 − x − 1 = 0,
and all those sets can be listed in time O(1.3248n).

Proof. The family of sets returned by our algorithm is denoted by F(T ). To ob-
tain the upper bound on the number of minimal double dominating sets of a tree,
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we prove that the algorithm lists these sets in time O(1.3248n). If diam(T ) ≤ 3,
then let F(T ) = {V (T )}. Every vertex of T is a leaf or a support vertex. Ob-
servations 1 and 2 imply that V (T ) is the only mdds of T . We have n ≥ 2 and
|F(T )| = 1. Obviously, 1 < αn.

Now assume that diam(T ) ≥ 4. Thus the order n of the tree T is at least
five. The results we obtain by the induction on the number n. Assume that they
are true for every tree T ′ of order n′ < n.

First assume that some support vertex of T , say x, is strong. Let y and z be
leaves adjacent to x. Let T ′ = T − y, and let

F(T ) = {D′ ∪ {y}:D′ ∈ F(T ′)}.

Let D′ be an mdds of the tree T ′. By Observation 2 we have x ∈ D′. It is easy
to see that D′ ∪ {y} is an mdds of T . Thus all elements of the family F(T )
are minimal double dominating sets of the tree T . Now let D be any mdds of
the tree T . By Observations 1 and 2 we have x, y, z ∈ D. Let us observe that
D\{y} is an mdds of the tree T ′ as the vertex x is still dominated at least twice.
By the inductive hypothesis we have D \ {y} ∈ F(T ′). Therefore the family
F(T ) contains all minimal double dominating sets of the tree T . We now get
|F(T )| = |F(T ′)| ≤ αn−1 < αn. Henceforth, we can assume that every support
vertex of T is weak.

We now root T at a vertex r of maximum eccentricity diam(T ). Let t be a leaf
at maximum distance from r, v be the parent of t, u be the parent of v, and w
be the parent of u in the rooted tree. If diam(T ) ≥ 5, then let d be the parent
of w. By Tx we denote the subtree induced by a vertex x and its descendants in
the rooted tree T .

Assume that u is adjacent to a leaf, say x. Let T ′ = T − Tv, and let

F(T ) = {D′ ∪ {v, t}:D′ ∈ F(T ′)}.

Let us observe that all elements of the family F(T ) are minimal double dominat-
ing sets of the tree T . Now let D be any mdds of the tree T . By Observations 1
and 2 we have t, x, v, u ∈ D. It is easy to observe that D \ {v, t} is an mdds of
the tree T ′. By the inductive hypothesis we have D \ {v, t} ∈ F(T ′). Therefore
the family F(T ) contains all minimal double dominating sets of the tree T . We
now get |F(T )| = |F(T ′)| ≤ αn−2 < αn.

Now assume that all children of u are support vertices. Assume that dT (u)
≥ 4. Let T ′ = T − Tv, and let

F(T ) = {D′ ∪ {v, t}:D′ ∈ F(T ′)}.

Let us observe that all elements of the family F(T ) are minimal double dominat-
ing sets of the tree T . Now let D be any mdds of the tree T . By Observations 1
and 2 we have v, t ∈ D. Let us observe that D \ {v, t} is an mdds of the tree T ′

as the vertex u is still dominated at least twice. By the inductive hypothesis we
have D \ {v, t} ∈ F(T ′). Therefore the family F(T ) contains all minimal double
dominating sets of the tree T . We now get |F(T )| = |F(T ′)| ≤ αn−2 < αn.
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Now assume that dT (u) = 3. Let x be the child of u other than v. The leaf
adjacent to x we denote by y. Let T ′ = T − Tu and T ′′ = T − Tv − y. Let F(T )
be a family as follows,

{D′ ∪ {t, v, x, y}:D′ ∈ F(T ′)}
∪ {D′′ ∪ {v, t, y}:D′′ ∈ F(T ′′) and D′′ \ {u, x} /∈ F(T ′)}.

Let us observe that all elements of the family F(T ) are minimal double dominat-
ing sets of the tree T . Now let D be any mdds of the tree T . By Observations 1
and 2 we have v, t, x, y ∈ D. If u /∈ D, then observe that D\{v, t, x, y} is an mdds
of the tree T ′. By the inductive hypothesis we have D \{v, t, x, y} ∈ F(T ′). Now
assume that u ∈ D. It is easy to observe that D \ {v, t, y} is an mdds of the
tree T ′′. By the inductive hypothesis we have D \ {v, t, y} ∈ F(T ′′). Let us ob-
serve thatD\{u, v, t, x, y} is not a double dominating set of the tree T ′, otherwise
D \ {u} is a double dominating set of the tree T , a contradiction to the mini-
mality of D. Therefore the family F(T ) contains all minimal double dominating
sets of the tree T . We now get |F(T )| = |F(T ′)| + |{D′′ ∈ F(T ′′):D′′ \ {u, x}
/∈ F(T ′)}| ≤ |F(T ′)|+ |F(T ′′)| ≤ αn−5+αn−3 = αn−5(α2+1) < αn−5 ·α5 = αn.

Now assume that dT (u) = 2. Assume that dT (w) ≥ 3. First assume that w
is adjacent to a leaf, say k. Let T ′ = T − Tu, and let

F(T ) = {D′ ∪ {v, t}:D′ ∈ F(T ′)}.

Let us observe that all elements of the family F(T ) are minimal double dominat-
ing sets of the tree T . Now let D be any mdds of the tree T . By Observations 1
and 2 we have v, t, w, k ∈ D. We have u /∈ D as the set D is minimal. Ob-
serve that D \ {v, t} is an mdds of the tree T ′. By the inductive hypothesis we
have D \ {v, t} ∈ F(T ′). Therefore the family F(T ) contains all minimal double
dominating sets of the tree T . We now get |F(T )| = |F(T ′)| ≤ αn−3 < αn.

Now assume that there is a child of w, say k, such that the distance of w to
the most distant vertex of Tk is two. Thus k is a support vertex of degree two.
The leaf adjacent to k we denote by l. Let T ′ = T − Tu − l and T ′′ = T − Tw.
Let

F(T ) = {D′ ∪ {v, t, l}:D′ ∈ F(T ′)} ∪ {D′′ ∪ V (Tw) \ {w}:D′′ ∈ F(T ′′)}.

Let us observe that all elements of the family F(T ) are minimal double dominat-
ing sets of the tree T . Now let D be any mdds of the tree T . By Observations 1
and 2 we have v, t, k, l ∈ D. If u /∈ D, then w ∈ D as the vertex u has to be domi-
nated twice. It is easy to observe thatD\{v, t, l} is an mdds of the tree T ′. By the
inductive hypothesis we have D \ {v, t, l} ∈ F(T ′). Now assume that u ∈ D.
We have w /∈ D, otherwise D \ {u} is a double dominating set of the tree T ,
a contradiction to the minimality ofD. Observe thatD∩V (T ′′) is an mdds of the
tree T ′′. By the inductive hypothesis we have D∩V (T ′′) ∈ F(T ′′). Therefore the
family F(T ) contains all minimal double dominating sets of the tree T . We now
get |F(T )| = |F(T ′)|+|F(T ′′)| ≤ αn−4+αn−6 = αn−6(α2+1) < αn−6 ·α6 = αn.

Now assume that for every child of w, say k, the distance of w to the most
distant vertex of Tk is three. Due to the earlier analysis of the degree of the
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vertex u, which is a child of w, it suffices to consider only the possibility when
Tk is a path P3. Let T

′ = T −Tw. Let T
′′ (T ′′′, respectively) be a tree that differs

from T ′ only in that it has the vertex w (the vertices w and u, respectively). Let
F(T ) be a family as follows,

{D′ ∪ V (Tw) \ {w}:D′ ∈ F(T ′)}
∪ {D′′ ∪ V (Tw) \ (NT (w) \ {d}):D′′ ∈ F(T ′′)}
∪ {D′′′ ∪ V (Tw) \ (NT (w) \ {x}): d /∈ D′′′ ∈ F(T ′′′) and x ∈ NT (w) \ {d}}.

Let us observe that all elements of the family F(T ) are minimal double dominat-
ing sets of the tree T . Now letD be any mdds of the tree T . If w /∈ D, then observe
that D ∩ V (T ′) is an mdds of the tree T ′. By the inductive hypothesis we have
D∩V (T ′) ∈ F(T ′). Now assume that w ∈ D. If no child of w belongs to the setD,
then observe thatD∩V (T ′′) is an mdds of the tree T ′′. By the inductive hypothe-
sis we have D∩V (T ′′) ∈ F(T ′′). Now assume that some child of w, say x, belongs
to the set D. Let us observe that (D ∪{u})∩V (T ′′′) is an mdds of the tree T ′′′.
By the inductive hypothesis we have (D ∪ {u}) ∩ V (T ′′′) ∈ F(T ′′′). Therefore
the family F(T ) contains all minimal double dominating sets of the tree T . We
now get |F(T )| = |F(T ′)| + |F(T ′′)| + (dT (w) − 1) · |{D′′′ ∈ F(T ′′′): d /∈ D′′′}|
≤ |F(T ′)| + |F(T ′′)| + (dT (w) − 1) · |F(T ′′′)| ≤ αn−3dT (w)+2 + αn−3dT (w)+3

+(dT (w)− 1) ·αn−3dT (w)+4. To show that αn−3dT (w)+2 +αn−3dT (w)+3 + (dT (w)
−1) · αn−3dT (w)+4 < αn, it suffices to show that α2 + α3 + (dT (w) − 1) · α4

< α3dT (w). We prove this by the induction on the degree of the vertex w. For
dT (w) = 3 we have α2+α3+(dT (w)−1) ·α4 = 2α4+α3+α2 = 2α4+α2(α+1)
= 2α4 + α5 = α4(α + 1) + α4 = α7 + α4 = α6(α3 − 1) + α4 = α9 + α4 − α6

< α9 = α3dT (w). We now prove that if the inequality α2+α3+(k−1)·α4 < α3k is
satisfied for an integer k = dT (w) ≥ 3, then it is also satisfied for k+1. We have
α2 +α3 + kα4 = α2 +α3 + (k− 1) ·α4 +α4 < α3k +α4 < α3k +α3k+1 = α3k+3.

Now assume that dT (w) = 2. If dT (d) = 1, then let F(T ) = {{d,w, v, t}}.
The tree T is a path P5. It is easy to observe that {d,w, v, t} is the only mdds of
the tree T . We have n = 5 and |F(T )| = 1. Obviously, 1 < α5. Now assume that
dT (d) ≥ 2. Due to the earlier analysis of the degrees of the vertices w and u,
we may assume that for every child of d, say k, the tree Tk is a path on at
most four vertices. Let T ′ = T − Tu, T

′′ = T − Tw and T ′′′ = T − Td. If T
′′′

is a single vertex, then let F(T ) = {{r, d, w, v, t}, {r, d, u, v, t}}. The tree T is
a path P6. Let us observe that {r, d, w, v, t} and {r, d, u, v, t} are the only two
minimal double dominating sets of the tree T . We have n = 6 and |F(T )| = 2.
Obviously, 2 < α6. Now assume that |V (T ′′′)| ≥ 2. Let F(T ) be a family as
follows,

{D′ ∪ {v, t}:D′ ∈ F(T ′)}
∪ {D′′ ∪ {u, v, t}: d ∈ D′′ ∈ F(T ′′)}
∪ {D′′′ ∪ V (Td) \ {d}:D′′′ ∈ F(T ′′′)},

where the third component is ignored if d is adjacent to a leaf. Let us observe
that all elements of the family F(T ) are minimal double dominating sets of the
tree T . Now let D be any mdds of the tree T . By Observations 1 and 2 we have
v, t ∈ D. If u /∈ D, then observe that D \ {v, t} is an mdds of the tree T ′. By
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the inductive hypothesis we have D \ {v, t} ∈ F(T ′). Now assume that u ∈ D.
If w /∈ D, then observe that D \ {u, v, t} is an mdds of the tree T ′′. By the
inductive hypothesis we have D \ {u, v, t} ∈ F(T ′′). Now assume that w ∈ D.
We have d /∈ D, otherwise D \ {u} is a double dominating set of the tree T ,
a contradiction to the minimality of D. Observe that D ∩ V (T ′′′) is an mdds
of the tree T ′′′. By the inductive hypothesis we have D ∩ V (T ′′′) ∈ F(T ′′′).
Therefore the family F(T ) contains all minimal double dominating sets of the
tree T . We now get |F(T )| = |F(T ′)| + |{D′′ ∈ F(T ′′): d ∈ D′′}| + |F(T ′′′)|
≤ |F(T ′)| + |F(T ′′)| + |F(T ′′′)| ≤ αn−3 + αn−4 + αn−5 = αn−5(α2 + α + 1)
= αn−5(α2 + α3) = αn−3(α+ 1) = αn−3 · α3 = αn.

We show that paths attain the bound from the previous theorem.

Proposition 4 For positive integers n, let an denote the number of minimal
double dominating sets of the path Pn. We have

an =

0 if n = 1;
1 if n = 2, 3, 4, 5;
an−5 + an−4 + an−3 if n ≥ 6.

Proof. Obviously, the one-vertex graph has no mdds. It is easy to see that a path
on at most five vertices has exactly one mdds. Observe that the path P6 has two
minimal double dominating sets. Now assume that n ≥ 7. Let T ′ = T − vn
−vn−1 − vn−2, T

′′ = T ′ − vn−3 and T ′′′ = T ′′ − vn−4. It follows from the last
paragraph of the proof of Theorem 3 that an = an−5 + an−4 + an−3.

Solving the recurrence an = an−5 + an−4 + an−3, we get limn→∞ n
√
an = α,

where α ≈ 1.3247 is the positive solution of the equation x3 − x− 1 = 0 (notice
that x5 − x2 − x− 1 = (x2 + 1)(x3 − x− 1)). This implies that the bound from
Theorem 3 is tight.

It is an open problem to prove the tightness of an upper bound on the number
of minimal dominating sets of a tree. In [10] it has been proved that any tree of
order n has less than 1.4656n minimal dominating sets. A family of trees having
more than 1.4167n minimal dominating sets has also been given.
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