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Abstract. We provide an algorithm for listing all minimal 2-dominating
sets of a tree of order n in time O(1.3248n). This implies that every tree
has at most 1.3248n minimal 2-dominating sets. We also show that this
bound is tight.
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1 Introduction

Let G = (V,E) be a graph. The order of a graph is the number of its ver-
tices. By the neighborhood of a vertex v of G we mean the set NG(v) = {u
∈ V (G):uv ∈ E(G)}. The degree of a vertex v, denoted by dG(v), is the car-
dinality of its neighborhood. By a leaf we mean a vertex of degree one, while
a support vertex is a vertex adjacent to a leaf. The distance between two ver-
tices of a graph is the number of edges in a shortest path connecting them. The
eccentricity of a vertex is the greatest distance between it and any other vertex.
The diameter of a graph G, denoted by diam(G), is the maximum eccentricity
among all vertices of G. Denote by Pn a path on n vertices. By a star we mean
a connected graph in which exactly one vertex has degree greater than one.

A subset D ⊆ V (G) is a dominating set of G if every vertex of V (G) \ D has
a neighbor in D, while it is a 2-dominating set of G if every vertex of V (G) \D
has at least two neighbors inD. A dominating (2-dominating, respectively) setD
is minimal if no proper subset of D is a dominating (2-dominating, respectively)
set of G. A minimal 2-dominating set is abbreviated as m2ds. Note that 2-
domination is a type of multiple domination in which each vertex, which is not
in the dominating set, is dominated at least k times for a fixed positive integer k.
Multiple domination was introduced by Fink and Jacobson [7], and further stud-
ied for example in [2, 10, 18]. For a comprehensive survey of domination in graphs,
see [11, 12].
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Observation 1 Every leaf of a graph G is in every 2-dominating set of G.

One of the typical questions in graph theory is how many subgraphs of a given
property can a graph on n vertices have. For example, the famous Moon and
Moser theorem [17] says that every graph on n vertices has at most 3n/3 maximal
independent sets.

Combinatorial bounds are of interest not only on their own, but also because
they are used for algorithm design as well. Lawler [16] used the Moon-Moser
bound on the number of maximal independent sets to construct an (1 + 3

√
3)n

·nO(1) time graph coloring algorithm, which was the fastest one known for
twenty-five years. In 2003 Eppstein [6] reduced the running time of a graph
coloring to O(2.4151n). In 2006 the running time was reduced [1, 14] to O(2n).
For an overview of the field, see [9].

Fomin et al. [8] constructed an algorithm for listing all minimal dominating
sets of a graph on n vertices in time O(1.7159n). There were also given graphs
(n/6 disjoint copies of the octahedron) having 15n/6 ≈ 1.5704n minimal domi-
nating sets. This establishes a lower bound on the running time of an algorithm
for listing all minimal dominating sets of a given graph.

The number of maximal independent sets in trees was investigated in [19].
Couturier et al. [5] considered minimal dominating sets in various classes of
graphs. The authors of [13] investigated the enumeration of minimal dominating
sets in graphs.

Bród and Skupień [3] gave bounds on the number of dominating sets of a tree.
They also characterized the extremal trees. The authors of [4] investigated the
number of minimal dominating sets in trees containing all leaves.

In [15] an algorithm was given for listing all minimal dominating sets of a tree
of order n in time O(1.4656n), implying that every tree has at most 1.4656n

minimal dominating sets. An infinite family of trees for which the number of
minimal dominating sets exceeds 1.4167n was also given. This established a lower
bound on the running time of an algorithm for listing all minimal dominating
sets of a given tree.

We provide an algorithm for listing all minimal 2-dominating sets of a tree
of order n in time O(1.3248n). This implies that every tree has at most 1.3248n

minimal 2-dominating sets. We also show that this bound is tight.

2 Results

We describe an algorithm for listing all minimal 2-dominating sets of a given
input tree. We prove that the running time of the algorithm is O(1.3248n),
implying that every tree has at most 1.3248n minimal 2-dominating sets.

Theorem 2 Every tree T of order n has at most αn minimal 2-dominating sets,
where α ≈ 1.32472 is the positive solution of the equation x3 − x− 1 = 0.

Proof. In our algorithm, the iterator of the solutions for a tree T is denoted
by F(T ). To obtain the upper bound on the number of minimal 2-dominating
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sets of a tree, we prove that the algorithm lists these sets in time O(1.3248n).
Notice that the diameter of a tree can easily be determined in polynomial time.
If diam(T ) = 0, then T = P1 = v1. Let F(T ) = {{v1}}. Obviously, {v1} is the
only m2ds of the path P1. We have n = 1 and |F(T )| = 1. We also have 1 < α.
If diam(T ) = 1, then T = P2 = v1v2. Let F(T ) = {{v1, v2}}. It is easy to observe
that {v1, v2} is the only m2ds of the path P2. We have n = 2 and |F(T )| = 1.
Obviously, 1 < α2. If diam(T ) = 2, then T is a star. Denote by x the support
vertex of T . Let F(T ) = {V (T ) \ {x}}. It is easy to observe that V (T ) \ {x} is
the only m2ds of the tree T . We have n ≥ 3 and |F(T )| = 1. Obviously, 1 < αn.

Now consider trees T with diam(T ) ≥ 3. The results we obtain by the in-
duction on the number n. Assume that they are true for every tree T ′ of order
n′ < n. The tree T can easily be rooted at a vertex r of maximum eccentricity
diam(T ) in polynomial time. A leaf, say t, at maximum distance from r, can
also be easily computed in polynomial time. Let v denote the parent of t and let
u denote the parent of v in the rooted tree. If diam(T ) ≥ 4, then let w denote
the parent of u. By Tx we denote the subtree induced by a vertex x and its
descendants in the rooted tree T .

If dT (v) ≥ 3, then let T ′ = T − Tv and let T ′′ differ from T ′ only in that it
has the vertex v. Let F(T ) be as follows,

{D′ ∪ V (Tv) \ {v}:D′ ∈ F(T ′)}
∪ {D′′ ∪ V (Tv) \ {v}:D′′ ∈ F(T ′′) and D′′ \ {v} /∈ F(T ′)}.

Let us observe that all elements of F(T ) are minimal 2-dominating sets of the
tree T . Now let D be any m2ds of T . Observation 1 implies that V (Tv)\{v} ⊆ D.
If v /∈ D, then observe that D∩V (T ′) is an m2ds of the tree T ′. By the inductive
hypothesis we have D ∩ V (T ′) ∈ F(T ′). Now assume that v ∈ D. It is easy to
observe that D ∩ V (T ′′) is an m2ds of the tree T ′′. By the inductive hypothesis
we have D ∩ V (T ′′) ∈ F(T ′′). The set D ∩ V (T ′) is not an m2ds of the tree T ′,
otherwise D \ {v} is a 2-dominating set of the tree T , a contradiction to the
minimality of D. By the inductive hypothesis we have D ∩ V (T ′) /∈ F(T ′).
Therefore F(T ) contains all minimal 2-dominating sets of the tree T . Now we
get |F(T )| = |F(T ′)|+ |{D′′ ∈ F(T ′′):D′′ \ {v} /∈ F(T ′)}| ≤ |F(T ′)|+ |F(T ′′)|
≤ αn−3 + αn−2 = αn−3(α+ 1) = αn−3 · α3 = αn.

If dT (v) = 2 and dT (u) ≥ 3, then let T ′ = T − Tv, T
′′ = T − Tu, and

F(T ) = {D′ ∪ {t}:u ∈ D′ ∈ F(T ′)} ∪ {D′′ ∪ V (Tu) \ {u}:D′′ ∈ F(T ′′)}.

Let us observe that all elements of F(T ) are minimal 2-dominating sets of the
tree T . Now let D be any m2ds of T . By Observation 1 we have t ∈ D. If v /∈ D,
then u ∈ D as the vertex v has to be dominated twice. Observe that D \ {t} is
an m2ds of the tree T ′. By the inductive hypothesis we have D \ {t} ∈ F(T ′).
Now assume that v ∈ D. We have u /∈ D, otherwise D\{v} is a 2-dominating set
of the tree T , a contradiction to the minimality of D. Observe that D∩V (T ′′) is
an m2ds of the tree T ′′. By the inductive hypothesis we haveD∩V (T ′′) ∈ F(T ′′).
Therefore F(T ) contains all minimal 2-dominating sets of the tree T . Now we get
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|F(T )| = |{D′ ∈ F(T ′):u ∈ D′}|+ |F(T ′′)| ≤ |F(T ′)|+ |F(T ′′)| ≤ αn−2 + αn−3

= αn−3(α+ 1) = αn−3 · α3 = αn.
If dT (v) = dT (u) = 2, then let T ′ = T − Tv, T

′′ = T − Tu, and

F(T ) = {D′ ∪ {t}:D′ ∈ F(T ′)} ∪ {D′′ ∪ {v, t}:w ∈ D′′ ∈ F(T ′′)}.

Let us observe that all elements of F(T ) are minimal 2-dominating sets of the
tree T . Now let D be any m2ds of T . By Observation 1 we have t ∈ D. If v /∈ D,
then observe that D \ {t} is an m2ds of the tree T ′. By the inductive hypothesis
we have D \ {t} ∈ F(T ′). Now assume that v ∈ D. We have u /∈ D, otherwise
D \ {v} is a 2-dominating set of the tree T , a contradiction to the minimality
of D. Moreover, we have w ∈ D as the vertex u has to be dominated twice.
Observe that D \ {v, t} is an m2ds of the tree T ′′. By the inductive hypothesis
we have D \ {v, t} ∈ F(T ′′). Therefore F(T ) contains all minimal 2-dominating
sets of the tree T . Now we get |F(T )| = |F(T ′)| + |{D′′ ∈ F(T ′′):w ∈ D′′}|
≤ |F(T ′)|+ |F(T ′′)| ≤ αn−2 + αn−3 = αn−3(α+ 1) = αn−3 · α3 = αn.

We now show that paths attain the bound from the previous theorem.

Proposition 3 For positive integers n, let an denote the number of minimal
2-dominating sets of the path Pn. We have

an =

{
1 if n ≤ 3;
an−3 + an−2 if n ≥ 4.

Proof. It is easy to see that a path on at most three vertices has exactly one
minimal 2-dominating set. Now assume that n ≥ 4. Let T ′ = T − vn − vn−1 and
T ′′ = T ′ − vn−2. It follows from the last paragraph of the proof of Theorem 2
that an = an−3 + an−2.

Solving the recurrence an = an−3 + an−2, we get limn→∞ n
√
an = α, where

α ≈ 1.3247 is the positive solution of the equation x3 − x− 1 = 0. This implies
that the bound from Theorem 2 is tight.

It is an open problem to prove the tightness of an upper bound on the number
of minimal dominating sets of a tree. In [15] it has been proved that any tree
of order n has less than 1.4656n minimal dominating sets. A family of trees
having more than 1.4167n minimal dominating sets has also been given.
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