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Abstract

The topic of our paper is the hat problem. In that problem, each of
n people is randomly fitted with a blue or red hat. Then everybody can
try to guess simultanously his own hat color looking at the hat colors
of the other people. The team wins if at least one person guesses his
hat color correctly and no one guesses his hat color wrong, otherwise
the team loses. The aim is to maximize the probability of win. In this
version every person can see everybody excluding him. We consider
such problem on a graph, where vertices are people, and a person can
see these people to which he is connected by an edge. The solution of
the hat problem is known for trees. In this paper we solve the problem
on the cycle C4.
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1 Introduction

In the hat problem, a team of n people enters a room and a blue or red hat is
randomly placed on the head of each person. Each person can see the hats of all
of the other people but not his own. No communication of any sort is allowed,
except for an initial strategy session before the game begins. Once they have
had a chance to look at the other hats, each person must simultanously guess
the color of his own hat or pass. The team wins if at least one person guesses
his hat color correctly and no one guesses his hat color wrong, otherwise the
team loses. The aim is to maximize the probability of win.

The hat problem with seven people called ”seven prisoners puzzle” was
formulated by T. Ebert in his Ph.D. Thesis [1]. The hat problem with three
people was the subject of an article in The New York Times [3].
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The hat problem has many applications and connections to other areas
of science, for example: information technology, linear programming, genetic
programming, economy, biology, approximating Boolean functions, and au-
toreducibility of random sequences. Therefore, it is hoped that the hat prob-
lem on a graph considered in this paper, as a natural generalization, is worth
exploring, and may also have many applications.

In the hat problem on a graph, vertices are people and a person can see
these people, to which he is connected by an edge. This variant of the hat prob-
lem was first considered in [2] where there are proved some general theorems
about the hat problem on a graph, and the problem is solved on trees.

In this paper we solve the hat problem on the cycle with four vertices.

2 Preliminaries

For a graph G, by V (G) and E(G) we denote the set of vertices and the set
of edges of this graph, respectively. If H is a subgraph of G, then we write
H ⊆ G. Let v ∈ V (G). By NG(v) we denote the neighbourhood of v, that is
NG(v) = {x ∈ V (G) : vx ∈ E(G)}. By Pn (Cn, Kn, respectively) we denote
the path (cycle, complete graph, respectively) with n vertices.

Without loss of generality we may assume an ordering of the vertices of
a graph G, that is V (G) = {v1, v2, . . . , vn}.

If vi ∈ V (G), then c(vi) is the first letter of the color of vi, so c : V (G)
→ {b, r} is a function. By a case for the graph G we mean a sequence
(c(v1), c(v2), . . . , c(vn)). The set of all cases for the graph G we denote by
C(G), of course |C(G)| = 2|V (G)|.

If vi ∈ V (G), then by si we denote a function si : V (G) → {b, r, ∗},
where si(vj) is the first letter of the color of vj if vi sees vj, and mark ∗
otherwise, that is, si(vj) = c(vj) if vj ∈ NG(vi), while si(vj) = ∗ if vj
∈ V (G) \ NG(vi). By a situation of the vertex vi in the graph G we mean
the sequence (si(v1), si(v2), . . . , si(vn)). The set of all possible situations of vi
in the graph G we denote Sti(G). Of course, |Sti(G)| = 2|NG(vi)|.

Let vi ∈ V (G). We say that a case (c1, c2, . . . , cn) for the graph G cor-
responds to a situation (t1, t2, . . . , tn) of the vertex vi in the graph G if it is
created from this situation only by changing every mark ∗ to the letter b or
r. So, a case corresponds to a situation of vi if every vertex adjacent to vi,
in that case case has the same color as in that situation. To every situation
of the vertex vi in the graph G correspond 2|V (G)|−dG(vi) cases, because every
situation of vi has |V (G)| − dG(vi) marks ∗.

By a statement of a vertex we mean its declaration about the color it
guesses it is. By the effect of a case we mean a win or a loss. According to the
definition of the hat problem, the effect of a case is a win if at least one vertex
states its color correctly and no vertex states its color wrong. The effect of
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a case is a loss if no vertex states its color or somebody states its color wrong.
By a guessing instruction for the vertex vi ∈ V (G) (denoted by gi) we mean

a function gi : Sti(G) → {b, r, p} which, for a given situation, gives the first
letter of the color vi guesses it is or a letter p if vi passes. Thus a guessing
instruction is a rule which determines the conduct of the vertex vi in every
situation. By a strategy for the graph G we mean a sequence (g1, g2, . . . , gn).
By F(G) we denote the family of all strategies for the graph G.

Let vi ∈ V (G) and S ∈ F(G). We say that vi never states its color in the
strategy S if vi passes in every situation, that is gi ≡ p. We say that vi always
states its color in the strategy S if vi states its color in every situation, that
is, for every T ∈ Sti(G) we have gi(T ) ∈ {b, r} (gi(T ) 6= p, equivalently).

If S ∈ F(G), then by Cw(S) and Cl(S) we denote the sets of cases for
the graph G in which the team wins or loses, respectively. Of course, |Cw(S)|
+|Cl(S)| = |C(G)|. Consequently, by the chance of success of the strategy S

we mean the number p(S) = |Cw(S)|
|C(G)| . By the hat number of the graph G we

mean the number h(G) = max{p(S) : S ∈ F(G)}. Certainly p(S) ≤ h(G). We
say that the strategy S is optimal for the graph G if p(S) = h(G). By F0(G)
we denote the family of all optimal strategies for the graph G.

Let t,m1,m2, . . . ,mt ∈ {1, 2, . . . , n} be such that mj 6= mk and cmj
∈ {b, r},

for every j, k ∈ {1, 2, . . . , t}. By C(G, v
cm1
m1 , v

cm2
m2 , . . . , v

cmt
mt ) we denote the set of

cases for the graph G such that the first letter of the color of vmj
is cmj

.

The following theorems are from [2]. The first of them presents a relation
between the hat number of a graph and the hat number of its any subgraph.

Theorem 1 If H is a subgraph of G, then h(H) ≤ h(G).

Since the graph K1 is a subgraph of every graph, we get the following
Corollary.

Corollary 2 For every graph G we have h(G) ≥ 1
2
.

In the next two theorems there are considered optimal strategies such that
some vertex always (never, respectively) states its color.

Theorem 3 Let G be a graph and let v be a vertex of G. If S ∈ F0(G) is
a strategy such that v always states its color, then h(G) = 1

2
.

Theorem 4 Let G be a graph and let v be a vertex of G. If S ∈ F0(G) is
a strategy such that v never states its color, then h(G) = h(G− v).

The following theorem is the solution of the hat problem on paths.

Theorem 5 For every path Pn we have h(Pn) = 1
2
.
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The next fact is about the unnecessity of statements of any further vertices
in a case in which some vertex already states its color.

Fact 6 Let G be a graph and let S be a strategy for this graph. Let C be a case
in which some vertex states its color. Then a statement of any other vertex
cannot improve the effect of the case C.

Now we characterize the number of cases in which the loss of the team is
caused by a statement of a vertex.

Fact 7 Let G be a graph and let vi be a vertex of G. Let S ∈ F(G). If vi
states its color in a situation, then the team loses in at least half of all cases
corresponding to this situation.

3 Results

In the following theorem we solve the hat problem on the cycle with four
vertices.

Theorem 8 h(C4) = 1
2
.

Proof. Let S be an optimal strategy for C4 such that there is no situation in
which both v1 and v3 state its colors, and there is no situation in which both
v2 and v4 state its colors. Now we prove that such strategy exists. Let S ′ be
an optimal strategy for C4. Assume in S ′ there is a situation in which both
v1 and v3 state its colors, or there is a situation in which both v2 and v4 state
its colors. Let the strategy S differ from S ′ only by that v3 does not state its
color when v1 states its color, and v4 does not state its color when v2 states its
color. By Fact 6 the statements of v3 and v4 cannot improve the effect of any
from that cases. Therefore, p(S) ≥ p(S ′). Since S ′ ∈ F0(C4), the strategy S is
also optimal. In the strategy S there is no such situation in which both v1 and
v3 state its colors, and there is no such situation in which both v2 and v4 state
its colors. If some vertex in C4 never states its color, then let i ∈ {1, 2, 3, 4} be
such that vi never states its color. By Theorem 4 we have h(C4) = h(C4− vi).
Since C4 − vi = P3, and by Theorem 5 we have h(P3) = 1

2
, we get h(C4) = 1

2
.

Now assume every vertex in C4 states its color. If some vertex in C4 always
states its color, then by Theorem 3 we have h(C4) = 1

2
. Now assume there is

no vertex in C4 such that always states its color. Every vertex states its color
in one, two, or three situations. We consider the following two possibilities:
(1) every vertex states its color in exactly one situation; (2) there is a vertex
which states its color in at least two situations.

(1) Any statement of any vertex in any situation is correct in exactly two
cases, because to every situation of any vertex correspond four cases, and in
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the half of them this vertex has the color it states it has. If every vertex states
its color in exactly one situation, then there are exactly 8 correct statements,
and even if every of them is in another case, then the team can win in at
most 8 cases. This implies that p(S) ≤ 8

16
= 1

2
. Since S ∈ F0(C4), we have

h(C4) ≤ 1
2
. Since by Corollary 2 we have h(C4) ≥ 1

2
, we get h(C4) = 1

2
.

(2) We consider the following two possibilities: (2.1) there is a vertex which
states its color in exactly three situations; (2.2) every vertex states its color in
at most two situations.

(2.1) Without loss of generality we assume v1 states its color in exactly
three situations. Since there is no such situation in which both v1 and v3 state
its colors, and v3 states its color in at least one situation, v3 states its color in
exactly one situation. Since in every from the situations (∗, b, ∗, b), (∗, b, ∗, r),
(∗, r, ∗, b), and (∗, r, ∗, r) the vertex v1 or v3 states his hat color, by Fact 7 we
have

|Cl(S, vb2, v
b
2)| ≥

|C(C4, v
b
2, v

b
2)|

2
, |Cl(S, vb2, v

r
2)| ≥

|C(C4, v
b
2, v

r
2)|

2
,

|Cl(S, vr2, v
b
2)| ≥

|C(C4, v
r
2, v

b
2)|

2
, and |Cl(S, vr2, v

r
2)| ≥

|C(C4, v
r
2, v

r
2)|

2
.

Consequently

|Cl(S)| = |Cl(S, vb2, v
b
2)|+ |Cl(S, vb2, v

r
2)|+ |Cl(S, vr2, v

b
2)|+ |Cl(S, vr2, v

r
2)|

≥ |C(C4, v
b
2, v

b
2)|

2
+
|C(C4, v

b
2, v

r
2)|

2
+
|C(C4, v

r
2, v

b
2)|

2
+
|C(C4, v

r
2, v

r
2)|

2
=
|C(C4)|

2
.

Now we get

p(S) =
|Cw(S)|
|C(C4)|

=
|C(C4)| − |Cl(S)|

|C(C4)|
≤
|C(C4)| − |C(C4)|

2

|C(C4)|
=

1

2
.

Since S ∈ F0(C4), we have h(C4) ≤ 1
2
. Since by Corollary 2 we have h(C4) ≥ 1

2
,

we get h(C4) = 1
2
.

(2.2) Since there is a vertex which states its color in exactly two situations,
without loss of generality we assume v1 states its color in exactly two situations.
We consider the following two possibilities: (2.2.1) v3 states its color in exactly
two situations; (2.2.2) v3 states its color in exactly one situation.

(2.2.1) Since in every from the situations (∗, b, ∗, b), (∗, b, ∗, r), (∗, r, ∗, b),
(∗, b, ∗, b) v1 or v3 states his hat color, by the same arguments as in (2.1), we
get h(C4) = 1

2
.

(2.2.2) We consider the following two possibilities: (a1) in both situations
in which v1 states its color, v2 has the same color or v4 has the same color; (a2)
in both situations in which v1 states its color, v2 has different colors, and v4
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has different colors. We consider the following two possibilities: (b1) in both
situations v1 states it has the same color; (b2) in both situations v1 states it
has different colors.

Let vi ∈ {v1, v2}. Now we consider the following four possibilities: (2.2.2.1)
(a1),(b1); (2.2.2.2) (a1),(b2); (2.2.2.3) (a2),(b1); (2.2.2.4) (a2),(b2).

(2.2.2.1) Without loss of generality we assume v1 states its color in the
situations (∗, b, ∗, b) and (∗, b, ∗, r), and in these situations it states it is blue.
Also without loss of generality we assume v3 states its color in the situation
(∗, r, ∗, b), and in this situation it states it is blue. These statements are correct
in the cases: (b, b, b, b), (b, b, r, b), (b, b, b, r), (b, b, r, r), (b, r, b, b), and (r, r, b, b),
and are wrong in the cases: (r, b, b, b), (r, b, r, b), (r, b, b, r), (r, b, r, r), (b, r, r, b),
and (r, r, r, b),. To the situation (b, ∗, b, ∗) correspond three cases in which v1
or v3 states its color correctly, and the case (b, r, b, r) in which neither v1 nor
v3 states its color. By Fact 6, among cases corresponding to the situation
(b, ∗, b, ∗), the effect only of (b, r, b, r) can be improved. In two cases corre-
sponding to the situation (b, ∗, b, ∗) the statement of vi is wrong. This implies
that in at least one case corresponding to the situation (b, ∗, b, ∗) in which v1 or
v3 states its color correctly, vi states its color wrong. Therefore, the statement
of vi in the situation (b, ∗, b, ∗) cannot improve the chance of success. Thus
we assume vi does not states its color in the situation (b, ∗, b, ∗). Now let us
consider the cases corresponding to the situation (b, ∗, r, ∗). To the situation
(b, ∗, r, ∗) correspond two cases in which v1 or v3 states its color correctly, one
case in which v1 or v3 states its color wrong, and one in which vi does not state
its color. By Fact 6, among cases corresponding to the situation (b, ∗, r, ∗), the
effect only of (b, r, r, r) can be improved. To improve the effect of this case, the
statement of vi has to be correct in this case. Among four cases corresponding
to the situation (b, ∗, r, ∗) in two of them the statement of vi is wrong. This
implies that in some case corresponding to the situation (b, ∗, b, ∗) in which v1
or v3 states its color correctly, vi states its color wrong, making worse the eval-
uation of this case. Therefore, the statement of vi in the situation (b, ∗, r, ∗)
cannot improve the chance of success. Thus we may assume vi does not state
its color in the situation (b, ∗, r, ∗). There is only one case corresponding to
the situation (r, ∗, b, ∗) in which neither v1 nor v3 states its color. There in
also only one case corresponding to the situation (r, ∗, r, ∗) in which neither
v1 nor v3 states its color. Therefore, there are only two cases which effects
can be improved. This implies that the team wins in at most eight cases,
so p(S) = |Cw(S)|

|C(Cn)| ≤
8
16

= 1
2
. Since S is an optimal strategy for G, we have

h(C4) ≤ 1
2
. Since by Theorem 1 we have h(C4) ≥ 1

2
, we get h(C4) = 1

2
.

(2.2.2.2) Without loss of generality we assume in the situation (∗, b, ∗, b) v1
states it is blue, and in the situation (∗, b, ∗, r) it states it is red. Also with-
out loss of generality we assume v3 states its color in the situation (∗, r, ∗, b),
and in this situation it states it is blue. These statements are correct in the
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cases: (b, b, b, b), (b, b, r, b), (r, b, b, r), (r, b, r, r), (b, r, b, b), and (r, r, b, b), and
are wrong in the cases: (r, b, b, b), (r, b, r, b), (b, b, b, r), (b, b, r, r), (b, r, r, b), and
(r, r, r, b). To the situation (b, ∗, b, ∗) correspond two correspond two cases in
which v1 or v3 states its color correctly, one case in which v1 or v3 states its
color wrong, and one in which neither v1 nor v3 states its color. To the situation
(r, ∗, b, ∗) also correspond two cases in which v1 or v3 states its color correctly,
one case in which v1 or v3 states its color wrong, and one in which neither v1
nor v3 states its color. By reasons similar as when considering the situation
(b, ∗, r, ∗) in (2.2.2.1), we may assume vi does not states its color in any of
the situations (b, ∗, b, ∗) and (r, ∗, b, ∗). To the situation (b, ∗, r, ∗) correspond
three cases in which v1 or v3 states its color, and one in which neither v1 nor v3
states its color. To the situation (r, ∗, r, ∗) also correspond three cases in which
v1 or v3 states its color, and one in which neither v1 nor v3 states its color.
Therefore, by Fact 6, there are two cases which effects can be improved. This
implies that the team wins in at most eight cases, so p(S) = |Cw(S)|

|C(C4)| ≤
8
16

= 1
2
.

(2.2.2.3) Without loss of generality we assume v1 states its color in the
situations (∗, b, ∗, b) and (∗, r, ∗, r), and in these situations it states it is blue.
Also without loss of generality we assume v3 states its color in the situation
(∗, r, ∗, b), and in this situation it states it is blue. These statements are correct
in the cases: (b, b, b, b), (b, b, r, b), (b, r, b, r), (b, r, r, r), (b, r, b, b), and (r, r, b, b),
and are wrong in the cases: (r, b, b, b), (r, b, r, b), (r, r, b, r), (r, r, r, r), (b, r, r, b),
and (r, r, r, b). To the situation (b, ∗, b, ∗) correspond three cases in which v1 or
v3 states its color correctly, and one in which neither v1 nor v3 states its color.
By reasons similar as in the situation (b, ∗, b, ∗) in (2.2.2.1), we may assume vi
does not state its color in the situation (b, ∗, b, ∗). To the situation (b, ∗, r, ∗)
correspond two cases in which v1 or v3 states its color correctly, one case in
which v1 or v3 states its color wrong, and one in which neither v1 nor v3 states
its color. By reasons similar in the situation (b, ∗, r, ∗) in (2.2.2.1), we may
assume vi does not states its color in the situation (b, ∗, r, ∗). To the situation
(r, ∗, b, ∗) corresponds only one case in which neither v1 nor v3 states its color,
and therefore statements of v2 or v4 can improve the effects of only two cases.
To the situation (r, ∗, r, ∗) also corresponds only one case in which neither v1
nor v3 states its color. Therefore, by Fact 6, there are two cases which effects
can be improved. This implies that the team wins in at most eight cases, so
p(S) = |Cw(S)|

|C(C4)| ≤
8
16

= 1
2
.

(2.2.2.4) Without loss of generality we assume in the situation (∗, b, ∗, b) v1
states it is blue, and in the situation (∗, r, ∗, r) it states it is red. Also with-
out loss of generality we assume v3 states its color in the situation (∗, r, ∗, b),
and in this situation it states it is blue. These statements are correct in the
cases: (b, b, b, b), (b, b, r, b), (r, r, b, r), (r, r, r, r), (b, r, b, b), and (r, r, b, b), and
are wrong in the cases: (r, b, b, b), (r, b, r, b), (b, r, b, r), (b, r, r, r), (b, r, r, b), and
(r, r, r, b). To the situation (b, ∗, b, ∗) correspond two cases in which v1 or v3
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states its color correctly, one case in which v1 or v3 states its color wrong,
and one in which neither v1 or v3 states its color. To the situation (r, ∗, b, ∗)
correspond two cases in which v1 or v3 states its color correctly, one case in
which v1 or v3 states its color wrong, and one in which neither v1 or v3 states
its color. By reasons similar as when considering the situation (b, ∗, r, ∗) in
(2.2.2.1), we may assume vi does not states its color in any of the situations
(b, ∗, b, ∗) and (r, ∗, b, ∗). To the situation (b, ∗, r, ∗) corresponds only one case
in which neither v1 nor v3 states its color, and therefore the statements of v2
or v4 can improve the effects of only two cases. To the situation (r, ∗, r, ∗) cor-
responds only one case in which neither v1 nor v3 states its color. Therefore,
by Fact 6, there are two cases which effects can be improved. This implies
that the team wins in at most eight cases, so p(S) = |Cw(S)|

|C(C4)| ≤
8
16

= 1
2
, and

consequenty h(C4) = 1
2
.
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