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Abstract. We provide an algorithm for listing all minimal double dominating sets of a tree of or-
der n in time (0(1.3248™). This implies that every tree has at most 1.3248"™ minimal double domi-
nating sets. We also show that this bound is tight.
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1. Introduction

Let G = (V, E) be a graph. The order of a graph is the number of its vertices. By the neighborhood of
a vertex v of G we mean the set Ng(v) = {u € V(G): uwv € E(G)}. The degree of a vertex v, denoted
by dg(v), is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while
a support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong (weak, respectively)
if it is adjacent to at least two leaves (exactly one leaf, respectively). The distance between two vertices
of a graph is the number of edges in a shortest path connecting them. The eccentricity of a vertex is the
greatest distance between it and any other vertex. The diameter of a graph G, denoted by diam(G), is the
maximum eccentricity among all vertices of G. A path on n vertices we denote by F,.
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A vertex of a graph is said to dominate itself and all of itsghdiors. A subseD C V(G) is
a dominating set of- if every vertex ofG is dominated by at least one vertexiof while it is a double
dominating set of7 if every vertex ofG is dominated by at least two vertices Bf. A dominating
(double dominating, respectively) st is minimal if no proper subset ab is a dominating (double
dominating, respectively) set @f. A minimal double dominating set is abbreviated as mdds. -Dou
ble domination in graphs was introduced by Harary and Hay@esFor a comprehensive survey of
domination in graphs, see [7, 8].

Observation 1. Every leaf of a graplds is in every double dominating set 6f.

Observation 2. Every support vertex of a graghi is in every double dominating set 6f.

One of the typical questions in graph theory is how many safitug of a given property can a graph
on n vertices have. For example, the famous Moon and Moser threfit2] says that every graph on
n vertices has at most’/? maximal independent sets.

Combinatorial bounds are of interest not only on their own,dso because they are used for algo-
rithm design as well. Lawler [11] used the Moon-Moser boundtee number of maximal independent
sets to construct afi + v/3)"” -n®() time graph coloring algorithm, which was the fastest oneakmo
for twenty-five years. For an overview of the field, see [5].

Fomin et al. [4] constructed an algorithm for listing all nmmal dominating sets of a graph on
n vertices in timeQ(1.7159™). There were also given graphs/6 disjoint copies of the octahedron)
having15"/6 ~ 1.5704" minimal dominating sets. This establishes a lower bouncherranning time
of an algorithm for listing all minimal dominating sets of aen graph.

The number of maximal independent sets in trees was inegstgin [13]. Couturier et al. [3]
considered minimal dominating sets in various classes abltg. The authors of [9] investigated the
enumeration of minimal dominating sets in graphs.

Brod and Skupien [1] gave bounds on the number of domigagéts of a tree. They also character-
ized the extremal trees. The authors of [2] investigatedchtimmber of minimal dominating sets in trees
containing all leaves.

In [10] an algorithm was given for listing all minimal domiirgg sets of a tree of order in time
O(1.4656™). This implies that every tree has at mdst656™ minimal dominating sets. An infinite
family of trees for which the number of minimal dominatindssexceedd.4167™ was also given. This
establishes a lower bound on the running time of an algorfthriisting all minimal dominating sets of
a given tree.

We provide an algorithm for listing all minimal double dorating sets of a tree of orderin time
0(1.3248™). This implies that every tree has at m@si248™ minimal double dominating sets. We also
show that this bound is tight.

2. Results

We describe a recursive algorithm which lists all minimalible dominating sets of a given input tree.
We prove that the running time of this algorithm@¥1.3248"), implying that every tree has at most
1.3248™ minimal double dominating sets.
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Theorem 3. Every tre€l’ of ordern has at mos#™ minimal double dominating sets, wherex 1.32472
is the positive solution of the equatiaf —x — 1 = 0, and all those sets can be listed in tifi¢1.32487).

Proof:
The family of sets returned by our algorithm is denoted/H§1"). To obtain the upper bound on the
number of minimal double dominating sets of a tree, we prhbe¢ the algorithm lists these sets in time
0(1.3248™). If diam(T") < 3, then letF(T) = {V(T')}. Every vertex of is a leaf or a support
vertex. Observations 1 and 2 imply tHatT") is the only mdds off". We haven > 2 and|F(T)| = 1.
Obviously,1 < o™.

Now assume that diaffi’) > 4. Thus the order. of the tre€T’ is at least five. The results we obtain
by the induction on the number. Assume that they are true for every tftEeof ordern’ < n.

First assume that some support verteq oBayz, is strong. Lety andz be leaves adjacent ta Let
T =T — vy, and let

F(T)={D'U{y}: D' € F(T")}.

Let D’ be an mdds of the tre€’. By Observation 2 we have € D'. It is easy to see thad’ U {y}
is an mdds ofl’. Thus all elements of the family(7") are minimal double dominating sets of the
treeT. Now let D be any mdds of the tre€. By Observations 1 and 2 we haxey,z € D. Let us
observe that) \ {y} is an mdds of the tre@” as the vertex: is still dominated at least twice. By the
inductive hypothesis we have \ {y} € F(T"). Therefore the family¥(7") contains all minimal double
dominating sets of the tre€. Now we get|/F(T)| = |F(T")| < a®! < a". Henceforth, we can
assume that every support vertexiofs weak.

We now rootT” at a vertex- of maximum eccentricity dia(T’). Lett¢ be a leaf at maximum distance
from r, v be the parent of, u be the parent of, andw be the parent of; in the rooted tree. If diaifT")
> 5, then letd be the parent ofv. By T, we denote the subtree induced by a vert@nd its descendants
in the rooted tred’.

Assume that: is adjacent to a leaf, say. LetT’ =T — T, and let

F(T) = {D' U{uv,t}: D' € F(T)}.

Let us observe that all elements of the famfy7") are minimal double dominating sets of the tfEe
Now let D be any mdds of the tre€. By Observations 1 and 2 we haver,v,u € D. Itis easy to
observe thaD\ {v, ¢t} is an mdds of the tre®&’. By the inductive hypothesis we hai®\ {v,t} € F(T").
Therefore the familyF(T") contains all minimal double dominating sets of the tiee Now we get
|F(T)| = |F(T| < a™ 2 < am.

Now assume that all children afare support vertices. Assume thigt(u) > 4. LetT’ =T — T,
and let

F(T) = {D'U{v,t}: D' € F(T')}.

Let us observe that all elements of the fam#yT") are minimal double dominating sets of the tfEe
Now let D be any mdds of the tréE. By Observations 1 and 2 we havel € D. Let us observe thab
\{v,t} is an mdds of the tre€’ as the vertex is still dominated at least twice. By the inductive hypoth-
esis we haveD \ {v,t} € F(T"). Therefore the familyF(T") contains all minimal double dominating
sets of the tre@. Now we getl F(T)| = |F(T")| < a2 < a™.
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Now assume thai;(u) = 3. Letz be the child ofu other tharw. The leaf adjacent to we denote
byy. LetT' =T — T, andT” =T — T, — y. Let F(T) be a family as follows,

{D'u{t,v,x,y}: D' € F(T')}
U {D"U{v,t,y}: D" € F(T")andD" \ {u,z} ¢ F(T')}.

Let us observe that all elements of the fam#yT") are minimal double dominating sets of the tfEe
Now let D be any mdds of the tre€. By Observations 1 and 2 we havet,z,y € D. If u ¢ D,
then observe thab \ {v,t¢,z,y} is an mdds of the tre@”’. By the inductive hypothesis we have
\{v,t,z,y} € F(T'). Now assume that € D. Itis easy to observe thd® \ {v,¢,y} is an mdds
of the treeT”. By the inductive hypothesis we have \ {v,t,y} € F(T"). Let us observe that
D\{u,v,t,z,y} is not a double dominating set of the trEg otherwiseD \ {u} is a double dominating
set of the tred”, a contradiction to the minimality @D. Therefore the familyF(7") contains all minimal
double dominating sets of the tréde Now we get|7(T)| = |F(T")| + {D" € F(T"): D" \ {u,x}
¢ F(THY < |F(TH|+|F(T")] <a"P+a"3=a"5?+1) < a5 .a® =am

Now assume thair(u) = 2. Assume thatl(w) > 3. First assume thab is adjacent to a leaf,
sayk. LetT' =T — T,, and let

F(T) = {D'U{v,t}: D' € F(T')}.

Let us observe that all elements of the fam#yT") are minimal double dominating sets of the tfEe
Now let D be any mdds of the treéE. By Observations 1 and 2 we havet, w, k € D. We haveu ¢ D
as the seD is minimal. Observe thab \ {v,¢} is an mdds of the tre@’. By the inductive hypothesis
we haveD \ {v,t} € F(T"). Therefore the familyF(T) contains all minimal double dominating sets of
the treeT’. Now we get| F(T)| = |F(T")| < a" 3 < a™.

Now assume that there is a child @f sayk, such that the distance af to the most distant vertex
of Ty is two. Thusk is a support vertex of degree two. The leaf adjacent tee denote by. Let
T"=T-T,—landT”" =T —T,,. Let

F(T) = {D' U{v,t,1}: D' € F(T')} U{D" UV (T,)\ {w}: D" € F(T")}.

Let us observe that all elements of the famfiyZ") are minimal double dominating sets of the tfEe
Now let D be any mdds of the treéE. By Observations 1 and 2 we havet, k,l € D. If u ¢ D, then
w € D as the vertex: has to be dominated twice. It is easy to observe Mat {v,t,1} is an mdds
of the treeT”. By the inductive hypothesis we have\ {v,t,i} € F(T'). Now assume that € D.
We havew ¢ D, otherwiseD \ {u} is a double dominating set of the tré& a contradiction to the
minimality of D. Observe thatD N V(T") is an mdds of the tre@”. By the inductive hypothesis
we haveD N V(T") € F(T"). Therefore the family#(T") contains all minimal double dominating
sets of the tred”. Now we get|F(T)| = |F(T")| + |[F(T")| < a®* 4+ a0 = a"5(a + 1/a)

< an—5(a + 1) — an—5 . a3 — an—Z < am.

Now assume that for every child af, sayk, the distance ofv to the most distant vertex @f; is
three. Due to the earlier analysis of the degree of the vertesich is a child ofw, it suffices to consider
only the possibility wherY}, is a pathP;. LetT’ = T — T,,. LetT” (T", respectively) be a tree that
differs from7” only in that it has the vertex (the verticesv andw, respectively). Lef(T") be a family
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as follows,

(D' V(T )\{w} D’ef( )}
U D" UV(T,)\ (Nr(w) \ {d}): D" € F(T")}
U {D"UV(Tw)\( T( Y\ {z}): d ¢ D" € F(T") andz € Nr(w) \ {d}}.

Let us observe that all elements of the fam#yT") are minimal double dominating sets of the tfEe
Now let D be any mdds of the treg. If w ¢ D, then observe thad N V' (7”) is an mdds of the tre@’.
By the inductive hypothesis we have N V(1") € F(T"). Now assume thab € D. If no child of w
belongs to the sdb, then observe thdd NV (T") is an mdds of the tre€”. By the inductive hypothesis
we haveD N V(T") € F(T"). Now assume that some child of sayz, belongs to the seb. Let
us observe thatD U {u}) N V(T") is an mdds of the tre&””. By the inductive hypothesis we have
(DU{u})NV(T") e F(T"). Therefore the family¥(T) contains all minimal double dominating sets
of the treeT". Now we get| F(T)| = |F(T")| + |F(T")| + (dr(w) — 1) - |[{D" € F(T"): d ¢ D"}|
< |F(T’)|+|]:(T”)|—|—(dT(w)—1)-|F(T”’)| < an_3dT(w)+2+an_3dT(w)+3—|—(dT(w)—l)-an_3dT(w)+4.
To show thain 347 (W42 4 qn=3dr(W)+3 | (4, (w) — 1) - a* 340 (@4 < o it suffices to show that
o? + a3 + (dp(w) — 1) - o < 37 (®), We prove this by the induction on the degree of the veutex
Fordr(w) = 3 we havea? + o2 + (dr(w) — 1) -a* = 20 +a® +a? = 2a* + a?(a+1) = 2a* +a°
=atatl)+at =a"+at =ab (0’ —1)+at =’ +a*—ab < a® = o?¥r(), Now we prove that if
the inequalityn®+a+(k—1)-a* < o®" is satisfied for an integdr = dr(w) > 3, then itis also satisfied
for k+1. We haven? + o3 + ka* = a2 +o® + (k—1)-a* + o < o3 + o < o3 o3k = o303,
Now assume thaty(w) = 2. If dr(d) = 1, then letF(T') = {{d, w,v,t}}. The treel" is a pathpPs.
It is easy to observe thdil, w,v,t} is the only mdds of the tre€. We haven = 5 and|F(T)| = 1.
Obviously,1 < a®. Now assume thair(d) > 2. Due to the earlier analysis of the degrees of the
verticesw andu, we may assume that for every child éf sayk, the treeT;, is a path on at most
four vertices. Letl’ =T - T,, 7" =T - T, andT"” = T — T,. If T" is a single vertex, then
let 7(T') = {{r,d,w,v,t},{r,d,u,v,t}}. The treeT is a pathPs. Let us observe thatr, d, w,v,t}
and{r,d,u,v,t} are the only two minimal double dominating sets of the ffeeWe haven = 6 and
|F(T)| = 2. Obviously,2 < a5. Now assume tha¥/ (7"")| > 2. Let F(T') be a family as follows,

{D'"U{v,t}: D' € F(T')}
u {D"U{u,v,t}:de D" e F(T")}
U {D"UV(T)\{d}: D" € F(T")},

where the third component is ignoreddifis adjacent to a leaf. Let us observe that all elements of the
family F(T') are minimal double dominating sets of the teNow let D be any mdds of the treg.
By Observations 1 and 2 we havet € D. If uw ¢ D, then observe thab \ {v,t} is an mdds of
the tree7’. By the inductive hypothesis we have \ {v,t} € F(T"). Now assume that € D.
If w ¢ D, then observe thab \ {u,v,¢} is an mdds of the tre@&”. By the inductive hypothesis
we haveD \ {u,v,t} € F(T"). Now assume thatv € D. We haved ¢ D, otherwiseD \ {u} is
a double dominating set of the trég a contradiction to the minimality ab. Observe thaD NV (T"")
is an mdds of the tre&””’. By the inductive hypothesis we haven V (T7"") € F(T""). Therefore the
family F(T") contains all minimal double dominating sets of the tfeeNow we get|7(T)| = |F(T")|
+|{D" € F(T"): d € D"}| + |F(T")| < |F(T")| + |FT")| + |FT")| < a3 + "+ a"°
=a"?(?+a+l)=a"?(?+ad)=a"3(a+1)=a"3. o =" O
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We show that paths attain the bound from the previous theorem

Proposition 4. For positive integers, let a,, denote the number of minimal double dominating sets of
the pathP,,. We have
0 if n=1;
ap = 1 if n=2,3,4,5;
Qp—s5 + ap—y + ap—3 ifn>6.

Proof:

Obviously, the one-vertex graph has no mdds. It is easy tdhsgtea path on at most five vertices has
exactly one mdds. Observe that the p&thhas two minimal double dominating sets. Now assume that
n>7LetT =T —v, —vp-1— Vp2, I =T —v,_z3andT” = T" — v,,_4. It follows from the

last paragraph of the proof of Theorem 3 that= a,,_5 + a,_4 + ap_3. O

Solving the recurrence, = a,—5 + an—4 + a,—3, We getlim,,_,, /a, = o, wherea =~ 1.3247 is
the positive solution of the equatiart —x — 1 = 0 (notice thate® — 22—z —1 = (22 +1)(2® —x —1)).
This implies that the bound from Theorem 3 is tight.

It is an open problem to prove the tightness of an upper boandlenumber of minimal dominating
sets of atree. In [10] it has been proved that any tree of ordhess less thah.4656™ minimal dominating
sets. A family of trees having more thant167™ minimal dominating sets has also been given.
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