An Algorithm for Listing all Minimal Double Dominating Sets of a Tree

Marcin Krzywkowski*
Faculty of Electronics, Telecommunications and Informatics
Gdansk University of Technology, Poland
marcin.krzywkowski@gmail.com

Abstract. We provide an algorithm for listing all minimal double dominating sets of a tree of order n in time $O(1.3248^n)$. This implies that every tree has at most 1.3248^n minimal double dominating sets. We also show that this bound is tight.

Keywords: domination, double domination, minimal double dominating set, tree, combinatorial bound, exact exponential algorithm, listing algorithm

1. Introduction

Let $G = (V, E)$ be a graph. The order of a graph is the number of its vertices. By the neighborhood of a vertex v of G we mean the set $N_G(v) = \{u \in V(G): uv \in E(G)\}$. The degree of a vertex v, denoted by $d_G(v)$, is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly one leaf, respectively). The distance between two vertices of a graph is the number of edges in a shortest path connecting them. The eccentricity of a vertex is the greatest distance between it and any other vertex. The diameter of a graph G, denoted by $\text{diam}(G)$, is the maximum eccentricity among all vertices of G. A path on n vertices we denote by P_n.

*Research partially supported by the Polish National Science Centre grant 2011/02/A/ST6/00201.
A vertex of a graph is said to dominate itself and all of its neighbors. A subset \(D \subseteq V(G) \) is a dominating set of \(G \) if every vertex of \(G \) is dominated by at least one vertex of \(D \), while it is a double dominating set of \(G \) if every vertex of \(G \) is dominated by at least two vertices of \(D \). A dominating (double dominating, respectively) set \(D \) is minimal if no proper subset of \(D \) is a dominating (double dominating, respectively) set of \(G \). A minimal double dominating set is abbreviated as mdds.

Double domination in graphs was introduced by Harary and Haynes [6]. For a comprehensive survey of domination in graphs, see [7, 8].

Observation 1. Every leaf of a graph \(G \) is in every double dominating set of \(G \).

Observation 2. Every support vertex of a graph \(G \) is in every double dominating set of \(G \).

One of the typical questions in graph theory is how many subgraphs of a given property can a graph on \(n \) vertices have. For example, the famous Moon and Moser theorem [12] says that every graph on \(n \) vertices has at most \(3^{n/3} \) maximal independent sets.

Combinatorial bounds are of interest not only on their own, but also because they are used for algorithm design as well. Lawler [11] used the Moon-Moser bound on the number of maximal independent sets to construct an \((1 + \sqrt{3})^n \cdot n^{O(1)}\) time graph coloring algorithm, which was the fastest one known for twenty-five years. For an overview of the field, see [5].

Fomin et al. [4] constructed an algorithm for listing all minimal dominating sets of a graph on \(n \) vertices in time \(O(1.7159^n) \). There were also given graphs (\(n/6 \) disjoint copies of the octahedron) having \(15^{n/6} \approx 1.5704^n \) minimal dominating sets. This establishes a lower bound on the running time of an algorithm for listing all minimal dominating sets of a given graph.

The number of maximal independent sets in trees was investigated in [13]. Couturier et al. [3] considered minimal dominating sets in various classes of graphs. The authors of [9] investigated the enumeration of minimal dominating sets in graphs.

Bród and Skupień [1] gave bounds on the number of dominating sets of a tree. They also characterized the extremal trees. The authors of [2] investigated the number of minimal dominating sets in trees containing all leaves.

In [10] an algorithm was given for listing all minimal dominating sets of a tree of order \(n \) in time \(O(1.4656^n) \). This implies that every tree has at most \(1.4656^n \) minimal dominating sets. An infinite family of trees for which the number of minimal dominating sets exceeds \(1.4167^n \) was also given. This establishes a lower bound on the running time of an algorithm for listing all minimal dominating sets of a given tree.

We provide an algorithm for listing all minimal double dominating sets of a tree of order \(n \) in time \(O(1.3248^n) \). This implies that every tree has at most \(1.3248^n \) minimal double dominating sets. We also show that this bound is tight.

2. Results

We describe a recursive algorithm which lists all minimal double dominating sets of a given input tree. We prove that the running time of this algorithm is \(O(1.3248^n) \), implying that every tree has at most \(1.3248^n \) minimal double dominating sets.
Theorem 3. Every tree T of order n has at most α^n minimal double dominating sets, where $\alpha \approx 1.32472$ is the positive solution of the equation $x^3 - x - 1 = 0$, and all those sets can be listed in time $O(1.3248^n)$.

Proof:
The family of sets returned by our algorithm is denoted by $F(T)$. To obtain the upper bound on the number of minimal double dominating sets of a tree, we prove that the algorithm lists these sets in time $O(1.3248^n)$. If $\text{diam}(T) \leq 3$, then let $F(T) = \{ V(T) \}$. Every vertex of T is a leaf or a support vertex. Observations 1 and 2 imply that $V(T)$ is the only mdds of T. We have $n \geq 2$ and $|F(T)| = 1$. Obviously, $1 < \alpha^n$.

Now assume that $\text{diam}(T) \geq 4$. Thus the order n of the tree T is at least five. The results we obtain by the induction on the number n. Assume that they are true for every tree T' of order $n' < n$.

First assume that some support vertex of T, say x, is strong. Let y and z be leaves adjacent to x. Let $T' = T - y$, and let

$$F(T) = \{ D' \cup \{ y \} : D' \in F(T') \}.$$

Let D' be an mdds of the tree T'. By Observation 2 we have $x \in D'$. It is easy to see that $D' \cup \{ y \}$ is an mdds of T. Thus all elements of the family $F(T)$ are minimal double dominating sets of the tree T. Now let D be any mdds of the tree T. By Observations 1 and 2 we have $x, y, z \in D$. Let us observe that $D \setminus \{ y \}$ is an mdds of the tree T' as the vertex x is still dominated at least twice. By the inductive hypothesis we have $D \setminus \{ y \} \in F(T')$. Therefore the family $F(T)$ contains all minimal double dominating sets of the tree T. Now we get $|F(T)| = |F(T')| \leq \alpha^{n-1} < \alpha^n$. Henceforth, we can assume that every support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity $\text{diam}(T)$. Let t be a leaf at maximum distance from r, v be the parent of t, u be the parent of v, and w be the parent of u in the rooted tree. If $\text{diam}(T) \geq 5$, then let d be the parent of w. By T_x we denote the subtree induced by a vertex x and its descendants in the rooted tree T.

Assume that u is adjacent to a leaf, say x. Let $T' = T - T_u$, and let

$$F(T) = \{ D' \cup \{ v, t \} : D' \in F(T') \}.$$

Let us observe that all elements of the family $F(T)$ are minimal double dominating sets of the tree T. Now let D be any mdds of the tree T. By Observations 1 and 2 we have $t, x, v, u \in D$. It is easy to observe that $D \setminus \{ v, t \}$ is an mdds of the tree T'. By the inductive hypothesis we have $D \setminus \{ v, t \} \in F(T')$. Therefore the family $F(T)$ contains all minimal double dominating sets of the tree T. Now we get $|F(T)| = |F(T')| \leq \alpha^{n-2} < \alpha^n$.

Now assume that all children of u are support vertices. Assume that $d_T(u) \geq 4$. Let $T' = T - T_v$, and let

$$F(T) = \{ D' \cup \{ v, t \} : D' \in F(T') \}.$$

Let us observe that all elements of the family $F(T)$ are minimal double dominating sets of the tree T. Now let D be any mdds of the tree T. By Observations 1 and 2 we have $v, t \in D$. Let us observe that $D \setminus \{ v, t \}$ is an mdds of the tree T' as the vertex u is still dominated at least twice. By the inductive hypothesis we have $D \setminus \{ v, t \} \in F(T')$. Therefore the family $F(T)$ contains all minimal double dominating sets of the tree T. Now we get $|F(T)| = |F(T')| \leq \alpha^{n-2} < \alpha^n$.

M. Krzywkowski / An Algorithm for Listing all Minimal Double Dominating Sets of a Tree 417
Now assume that \(d_T(u) = 3 \). Let \(x \) be the child of \(u \) other than \(v \). The leaf adjacent to \(x \) we denote by \(y \). Let \(T' = T - T_u \) and \(T'' = T - T_y - y \). Let \(\mathcal{F}(T) \) be a family as follows,

\[
\{ D' \cup \{ t, v, x, y \} : D' \in \mathcal{F}(T') \}
\cup \{ D'' \cup \{ v, t, y \} : D'' \in \mathcal{F}(T'') \text{ and } D'' \setminus \{ u, x \} \notin \mathcal{F}(T') \}.
\]

Let us observe that all elements of the family \(\mathcal{F}(T) \) are minimal double dominating sets of the tree \(T \). Now let \(D \) be any mdds of the tree \(T \). By Observations 1 and 2 we have \(v, t, x, y \in D \). If \(u \notin D \), then observe that \(D \setminus \{ v, t, x, y \} \) is an mdds of the tree \(T' \). By the inductive hypothesis we have \(D \setminus \{ v, t, x, y \} \notin \mathcal{F}(T') \). Now assume that \(u \in D \). It is easy to observe that \(D \setminus \{ v, t, y \} \) is an mdds of the tree \(T'' \). By the inductive hypothesis we have \(D \setminus \{ v, t, y \} \notin \mathcal{F}(T'') \). Let us observe that \(D \setminus \{ u, v, t, y \} \) is not a double dominating set of the tree \(T' \), otherwise \(D \setminus \{ u \} \) is a double dominating set of the tree \(T \), a contradiction to the minimality of \(D \). Therefore the family \(\mathcal{F}(T) \) contains all minimal double dominating sets of the tree \(T \). Now we get \(|\mathcal{F}(T)| = |\mathcal{F}(T')| + |\mathcal{F}(T'')| \) such that \(|\mathcal{F}(T'')| \leq \alpha^{n-5} + \alpha^{n-3} = \alpha^{n-5}(\alpha^2 + 1) < \alpha^{n-5} \cdot \alpha^5 = \alpha^n \).

Now assume that \(d_T(u) = 2 \). Assume that \(d_T(w) \geq 3 \). First assume that \(w \) is adjacent to a leaf, say \(k \). Let \(T' = T - T_u \), and let

\[
\mathcal{F}(T) = \{ D' \cup \{ v, t \} : D' \in \mathcal{F}(T') \}.
\]

Let us observe that all elements of the family \(\mathcal{F}(T) \) are minimal double dominating sets of the tree \(T \). Now let \(D \) be any mdds of the tree \(T \). By Observations 1 and 2 we have \(v, t, k, l \in D \). If \(u \notin D \), then \(D \setminus \{ v, t \} \) is a minimal double dominating set of the tree \(T' \). By the inductive hypothesis we have \(D \setminus \{ v, t \} \notin \mathcal{F}(T') \). Therefore the family \(\mathcal{F}(T) \) contains all minimal double dominating sets of the tree \(T \). Now we get \(|\mathcal{F}(T)| = |\mathcal{F}(T')| \leq \alpha^{n-3} < \alpha^n \).

Now assume that there is a child of \(w \), say \(k \), such that the distance of \(w \) to the most distant vertex of \(T_k \) is two. Thus \(k \) is a support vertex of degree two. The leaf adjacent to \(k \) we denote by \(l \). Let \(T' = T - T_u - l \) and \(T'' = T - T_w \). Let

\[
\mathcal{F}(T) = \{ D' \cup \{ v, t, l \} : D' \in \mathcal{F}(T') \} \cup \{ D'' \cup V(T_w) \setminus \{ w \} : D'' \in \mathcal{F}(T'') \}.
\]

Let us observe that all elements of the family \(\mathcal{F}(T) \) are minimal double dominating sets of the tree \(T \). Now let \(D \) be any mdds of the tree \(T \). By Observations 1 and 2 we have \(v, t, k, l \in D \). If \(u \notin D \), then \(w \in D \) as the vertex \(u \) has to be dominated twice. It is easy to observe that \(D \setminus \{ v, t, l \} \) is an mdds of the tree \(T'' \). By the inductive hypothesis we have \(D \setminus \{ v, t, l \} \notin \mathcal{F}(T'') \). Now assume that \(u \in D \). We have \(w \notin D \), otherwise \(D \setminus \{ u \} \) is a double dominating set of the tree \(T \), a contradiction to the minimality of \(D \). Observe that \(D \cap V(T'' \setminus \{ w \}) \) is an mdds of the tree \(T'' \). By the inductive hypothesis we have \(D \cap V(T'' \setminus \{ w \}) \notin \mathcal{F}(T'') \). Therefore the family \(\mathcal{F}(T) \) contains all minimal double dominating sets of the tree \(T \). Now we get \(|\mathcal{F}(T)| = |\mathcal{F}(T')| + |\mathcal{F}(T'')| \leq \alpha^{n-4} + \alpha^{n-6} = \alpha^{n-5}(\alpha + 1) < \alpha^{n-5} \cdot \alpha^3 = \alpha^n \).

Now assume that for every child of \(w \), say \(k \), the distance of \(w \) to the most distant vertex of \(T_k \) is three. Due to the earlier analysis of the degree of the vertex \(u \), which is a child of \(w \), it suffices to consider only the possibility when \(T_k \) is a path \(P_3 \). Let \(T' = T - T_w \). Let \(T''(T''') \), respectively be a tree that differs from \(T' \) only in that it has the vertex \(w \) (the vertices \(w \) and \(u \), respectively). Let \(\mathcal{F}(T) \) be a family
as follows,

\[\{D' \cup V(T_w) \setminus \{w\}: D' \in F(T')\} \]

\[\cup \{D'' \cup V(T_w) \setminus \{N_T(w) \setminus \{d\}\}: D'' \in F(T'')\} \]

\[\cup \{D''' \cup V(T_w) \setminus \{N_T(w) \setminus \{x\}\}: \quad \text{if } d \notin D''' \in F(T'''\prime) \text{ and } x \in N_T(w) \setminus \{d\}\}. \]

Let us observe that all elements of the family \(F(T) \) are minimal double dominating sets of the tree \(T \). Now let \(D \) be any mdds of the tree \(T \). If \(w \notin D \), then observe that \(D \cap V(T') \) is a mdds of the tree \(T' \). By the inductive hypothesis we have \(D \cap V(T') \in F(T') \). Now assume that \(w \in D \). If no child of \(w \) belongs to the set \(D \), then observe that \(D \cap V(T''\prime) \) is an mdds of the tree \(T''\prime \). By the inductive hypothesis we have \(D \cap V(T''\prime) \in F(T''\prime) \). Now assume that some child of \(w \), say \(x \), belongs to the set \(D \). Let us observe that \((D \cup \{w\}) \cap V(T''\prime) \) is an mdds of the tree \(T''\prime \). By the inductive hypothesis we have \((D \cup \{w\}) \cap V(T''\prime) \in F(T''\prime) \). Therefore the family \(F(T) \) contains all minimal double dominating sets of the tree \(T \). Now we get \(|F(T)| = |F(T')| + |F(T'')| + (d_T(w) - 1) \cdot \{D''' \cap F(T''\prime): d \notin D'''\} \)

\[\leq |F(T')| + |F(T'')| + (d_T(w) - 1) \cdot \{D''' \cap F(T'')\} \]

\[\leq \alpha_n^{n - 3d_T(w) + 2} + \alpha_n^{n - 3d_T(w) + 3} + (d_T(w) - 1) \cdot \alpha_n^{n - 3d_T(w) + 4} \]

To show that \(\alpha_n^{n - 3d_T(w) + 2} + \alpha_n^{n - 3d_T(w) + 3} + (d_T(w) - 1) \cdot \alpha_n^{n - 3d_T(w) + 4} < \alpha^6 \), it suffices to show that \(\alpha^2 + \alpha^3 + (d_T(w) - 1) \cdot \alpha^4 < \alpha^{3d_T(w)} \). We prove this by the induction on the degree of the vertex \(w \). For \(d_T(w) = 3 \) we have \(\alpha^2 + \alpha^3 + (d_T(w) - 1) \cdot \alpha^4 = 2\alpha^4 + \alpha^3 + \alpha^2 = 2\alpha^4 + \alpha^2(\alpha + 1) = 2\alpha^4 + \alpha^5 = \alpha^4(\alpha + 1) + \alpha^4 = \alpha^7 + \alpha^4 = \alpha^6(\alpha^3 - 1) + \alpha^4 = \alpha^9 + \alpha^4 - \alpha^6 < \alpha^9 = \alpha^3d_T(w) \). Now we prove that the inequality \(\alpha^2 + \alpha^3 + (k - 1) \cdot \alpha^4 < \alpha^{3k} \) is satisfied for an integer \(k = d_T(w) \geq 3 \), then it is also satisfied for \(k + 1 \). We have \(\alpha^2 + \alpha^3 + k\alpha^4 = \alpha^2 + \alpha^3 + (k - 1) \cdot \alpha^4 + \alpha^4 < \alpha^{3k} + \alpha^{3k+1} = \alpha^{3k+3} \).

Now assume that \(d_T(w) = 2 \). If \(d_T(d) = 1 \), then let \(F(T) = \{\{d, w, v, t\}\} \). The tree \(T \) is a path \(P_6 \).

It is easy to observe that \(\{d, w, v, t\} \) is the only mdds of the tree \(T \). We have \(n = 5 \) and \(|F(T)| = 1 \). Obviously, \(1 < \alpha^5 \). Now assume that \(d_T(d) \geq 2 \). Due to the earlier analysis of the degrees of the vertices \(w \) and \(u \), we may assume that for every child of \(d \), say \(k \), the tree \(T_k \) is a path on at most four vertices. Let \(T' = T - T_u \), \(T'' = T - T_w \) and \(T''' = T - T_d \). If \(T''' \) is a single vertex, then let \(F(T) = \{\{r, d, w, v, t\}, \{r, d, u, v, t\}\} \). The tree \(T \) is a path \(P_6 \). Let us observe that \(\{r, d, w, v, t\} \) and \(\{r, d, u, v, t\} \) are the only two minimal double dominating sets of the tree \(T \). We have \(n = 6 \) and \(|F(T)| = 2 \). Obviously, \(2 < \alpha^6 \). Now assume that \(|V(T''\prime)\| \geq 2 \). Let \(F(T) \) be a family as follows,

\[\{D' \cup \{v, t\}: D' \in F(T')\} \]

\[\cup \{D'' \cup \{u, v, t\}: d \in D'' \in F(T'')\} \]

\[\cup \{D''' \cup V(T_d) \setminus \{d\}: D''' \in F(T''\prime)\}, \]

where the third component is ignored if \(d \) is adjacent to a leaf. Let us observe that all elements of the family \(F(T) \) are minimal double dominating sets of the tree \(T \). Now let \(D \) be any mdds of the tree \(T \). By Observations 1 and 2 we have \(v, t \in D \). If \(u \notin D \), then observe that \(D \setminus \{v, t\} \) is an mdds of the tree \(T' \). By the inductive hypothesis we have \(D \setminus \{v, t\} \in F(T') \). Now assume that \(u \in D \). If \(w \notin D \), then observe that \(D \setminus \{u, v, t\} \) is an mdds of the tree \(T'' \). By the inductive hypothesis we have \(D \setminus \{u, v, t\} \in F(T'') \). Now assume that \(w \in D \). We have \(d \notin D \), otherwise \(D \setminus \{u\} \) is a double dominating set of the tree \(T \), a contradiction to the minimality of \(D \). Observe that \(D \cap V(T''\prime) \) is an mdds of the tree \(T'' \). By the inductive hypothesis we have \(D \cap V(T''\prime) \in F(T''\prime) \). Therefore the family \(F(T) \) contains all minimal double dominating sets of the tree \(T \). Now we get \(|F(T)| = |F(T')| + |F(T'')| + |F(T'''\prime)| \)

\[\leq n - \frac{3}{2} + \frac{n}{2} + \alpha_n^{n - 3} + \alpha_n^{n - 4} + \alpha_n^{n - 5} \]

\[= \alpha_n^{n - 5}(\alpha^2 + \alpha + 1) = \alpha_n^{n - 5}(\alpha^2 + \alpha^3) = \alpha_n^{n - 3}(\alpha + 1) = \alpha_n^{n - 3} \cdot \alpha^3 = \alpha^n. \]
We show that paths attain the bound from the previous theorem.

Proposition 4. For positive integers \(n \), let \(a_n \) denote the number of minimal double dominating sets of the path \(P_n \). We have

\[
a_n = \begin{cases}
0 & \text{if } n = 1; \\
1 & \text{if } n = 2, 3, 4, 5; \\
a_{n-5} + a_{n-4} + a_{n-3} & \text{if } n \geq 6.
\end{cases}
\]

Proof:

Obviously, the one-vertex graph has no mdds. It is easy to see that a path on at most five vertices has exactly one mdds. Observe that the path \(P_6 \) has two minimal double dominating sets. Now assume that \(n \geq 7 \). Let \(T' = T - v_{n} - v_{n-1} - v_{n-2}, T'' = T' - v_{n-3} \) and \(T'' = T'' - v_{n-4} \). It follows from the last paragraph of the proof of Theorem 3 that \(a_n = a_{n-5} + a_{n-4} + a_{n-3} \).

Solving the recurrence \(a_n = a_{n-5} + a_{n-4} + a_{n-3} \), we get \(\lim_{n \to \infty} \sqrt[n]{a_n} = \alpha \), where \(\alpha \approx 1.3247 \) is the positive solution of the equation \(x^3 - x - 1 = 0 \) (notice that \(x^5 - x^2 - x - 1 = (x^2 + 1)(x^3 - x - 1) \)). This implies that the bound from Theorem 3 is tight.

It is an open problem to prove the tightness of an upper bound on the number of minimal dominating sets of a tree. In [10] it has been proved that any tree of order \(n \) has less than \(1.4656^n \) minimal dominating sets. A family of trees having more than \(1.4167^n \) minimal dominating sets has also been given.

References

