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Abstract

A vertex of a graph is said to dominate itself and all of its neighbors.
A double outer-independent dominating set of a graph G is a set D of ver-
tices of G such that every vertex of G is dominated by at least two vertices
of D, and the set V (G) \D is independent. The double outer-independent
domination number of a graph G, denoted by γoi

d
(G), is the minimum car-

dinality of a double outer-independent dominating set of G. We prove that
for every nontrivial tree T of order n, with l leaves and s support vertices
we have γoi

d
(T ) ≤ (2n + l + s)/3, and we characterize the trees attaining

this upper bound.
Keywords: double outer-independent domination, double domination,
tree.
AMS Subject Classification: 05C05, 05C69.

1 Introduction

Let G = (V,E) be a graph. By the neighborhood of a vertex v of G we mean
the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v, denoted
by dG(v), is the cardinality of its neighborhood. By a leaf we mean a vertex
of degree one, while a support vertex is a vertex adjacent to a leaf. We say that
a support vertex is strong (weak, respectively) if it is adjacent to at least two
leaves (exactly one leaf, respectively). The path on n vertices we denote by Pn.
We say that a subset of V (G) is independent if there is no edge between any two
vertices of this set.
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A vertex of a graph is said to dominate itself and all of its neighbors. A subset
D ⊆ V (G) is a dominating set of G if every vertex of G is dominated by at least
one vertex of D, while it is a double dominating set of G if every vertex of G is
dominated by at least two vertices of D. The domination (double domination,
respectively) number ofG, denoted by γ(G) (γd(G), respectively), is the minimum
cardinality of a dominating (double dominating, respectively) set of G. Double
domination in graphs was introduced by Harary and Haynes [4], and further
studied for example in [1, 3]. For a comprehensive survey of domination in graphs,
see [5, 6].
A subset D ⊆ V (G) is a double outer-independent dominating set, abbrevi-

ated DOIDS, of G if every vertex of G is dominated by at least two vertices of D,
and the set V (G) \D is independent. The double outer-independent domination
number of a graph G, denoted by γoi

d
(G), is the minimum cardinality of a double

outer-independent dominating set of G. A double outer-independent dominat-
ing set of G of minimum cardinality is called a γoi

d
(G)-set. The study of double

outer-independent domination in graphs was initiated in [7].
A 2-dominating set of a graph G is a set D of vertices of G such that every

vertex of V (G) \D has at least two neighbors in D. The 2-domination number
of G, denoted by γ2(G), is the minimum cardinality of a 2-dominating set of G.
Blidia, Chellali, and Favaron [2] proved the following upper bound on the 2-
domination number of a tree. For every nontrivial tree T of order n with l leaves
we have γ2(T ) ≤ (n+ l)/2. They also characterized the extremal trees.
We prove the following upper bound on the double outer-independent dom-

ination number of a tree. For every nontrivial tree T of order n, with l leaves
and s support vertices we have γoi

d
(T ) ≤ (2n+ l+ s)/3. We also characterize the

trees attaining this upper bound.

2 Results

Since the one-vertex graph does not have a double outer-independent dominating
set, in this paper, by a tree we mean only a connected graph with no cycle, and
which has at least two vertices.
We begin with the following two straightforward observations.

Observation 1 Every leaf of a graph G is in every γd(G)-set.

Observation 2 Every support vertex of a graph G is in every γd(G)-set.

We show that if T is a nontrivial tree of order n, with l leaves and s support
vertices, then γoi

d
(T ) is bounded above by (2n+ l+s)/3. For the purpose of char-

acterizing the trees attaining this bound we introduce a family T of trees T = Tk

that can be obtained as follows. Let T1 be a path P3 with leaves labeled x and z,
and the support vertex labeled y. Let A(T1) = {x, y, z}. Let H1 be a path P2
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with vertices labeled u and v. Let finally H2 be a path P3 with leaves labeled u
and w, and the support vertex labeled v. If k is a positive integer, then Tk+1 can
be obtained recursively from Tk by one of the following operations.

• Operation O1: Attach a vertex, say z, by joining it to a support vertex
of Tk. Let A(Tk+1) = A(Tk) ∪ {z}.

• Operation O2: Attach a vertex, say z, by joining it to a leaf of Tk adjacent
to a strong support vertex. Let A(Tk+1) = A(Tk) ∪ {z}.

• Operation O3: Attach a copy of H1 by joining the vertex u to a vertex
of Tk which is not a leaf and is adjacent to a support vertex. Let A(Tk+1)
= A(Tk) ∪ {u, v}.

• Operation O4: Attach a copy of H2 by joining the vertex u to a leaf of Tk

adjacent to a weak support vertex. Let A(Tk+1) = A(Tk) ∪ {v, w}.

We now prove that for every tree T of the family T , the set A(T ) defined
above is a DOIDS of minimum cardinality equal to (2n+ l + s)/3.

Lemma 3 If T ∈ T , then the set A(T ) defined above is a γoi

d
(T )-set of size

(2n+ l + s)/3.

Proof. We use the terminology of the construction of the trees T = Tk, the
set A(T ), and the graphs H1 and H2 defined above. To show that A(T ) is
a γoi

d
(T )-set of cardinality (2n+ l+ s)/3 we use the induction on the number k of

operations performed to construct the tree T . If T = T1 = P3, then (2n+ l+s)/3
= (6 + 2 + 1)/3 = 3 = |A(T )| = γoi

d
(T ). Let k ≥ 2 be an integer. Assume that

the result is true for every tree T ′ = Tk of the family T constructed by k − 1
operations. For a given tree T ′, let n′ denote its order, l′ the number of its leaves,
and s′ the number of support vertices. Let T = Tk+1 be a tree of the family T
constructed by k operations.
First assume that T is obtained from T ′ by operation O1. We have n = n′+1,

l = l′+1 and s = s′. The vertex to which is attached z we denote by x. Let y be
a leaf adjacent to x and different from z. By Observation 2 we have x ∈ A(T ′).
It is easy to see that A(T ) = A(T ′) ∪ {z} is a DOIDS of the tree T . Thus
γoi

d
(T ) ≤ γoi

d
(T ′) + 1. Now let D be any γoi

d
(T )-set. By Observations 1 and 2

we have z, y, x ∈ D. It is easy to see that D \ {z} is a DOIDS of the tree T ′.
Therefore γoi

d
(T ′) ≤ γoi

d
(T )− 1. We now conclude that γoi

d
(T ) = γoi

d
(T ′) + 1. We

get γoi

d
(T ) = |A(T )| = |A(T ′)|+1 = (2n′+ l′+s′)/3+1 = (2n−2+ l−1+s)/3+1

= (2n+ l + s)/3.
Now suppose that T is obtained from T ′ by operation O2. We have n = n′+1,

l = l′ and s = s′ + 1. The leaf to which is attached z we denote by x. By y we
denote the neighbor of x other than z. By Observation 1 we have x ∈ A(T ′).
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It is easy to see that A(T ) = A(T ′) ∪ {z} is a DOIDS of the tree T . Thus
γoi

d
(T ) ≤ γoi

d
(T ′) + 1. Now let D be any γoi

d
(T )-set. By Observations 1 and 2

we have z, x, y ∈ D. It is easy to see that D \ {z} is a DOIDS of the tree T ′.
Therefore γoi

d
(T ′) ≤ γoi

d
(T )− 1. We now conclude that γoi

d
(T ) = γoi

d
(T ′) + 1. We

get γoi

d
(T ) = |A(T )| = |A(T ′)|+1 = (2n′+ l′+s′)/3+1 = (2n−2+ l+s−1)/3+1

= (2n+ l + s)/3.
Now assume that T is obtained from T ′ by operation O3. We have n = n′+2,

l = l′+1 and s = s′+1. The vertex to which is attached P2 we denote by x. Let
y be a support vertex adjacent to x, and let z be a leaf adjacent to y. Obviously,
A(T ) = A(T ′) ∪ {u, v} is a DOIDS of the tree T . Thus γoi

d
(T ) ≤ γoi

d
(T ′) + 2.

Now let D be any γoi

d
(T )-set. By Observations 1 and 2 we have v, z, u, y ∈ D.

If x ∈ D, then it is easy to see that D \ {u, v} is a DOIDS of the tree T ′. Now
suppose that x /∈ D. Let a denote a neighbor of x other than u and y. The set
V (T ) \ D is independent, thus a ∈ D. Let us observe that now also D \ {u, v}
is a DOIDS of the tree T ′ as the vertex x is still dominated at least twice.
Therefore γoi

d
(T ′) ≤ γoi

d
(T )− 2. We now conclude that γoi

d
(T ) = γoi

d
(T ′) + 2. We

get γoi

d
(T ) = |A(T )| = |A(T ′)|+2 = (2n′+l′+s′)/3+2 = (2n−4+l−1+s−1)/3+2

= (2n+ l + s)/3.
Now assume that T is obtained from T ′ by operation O4. We have n = n′+3,

l = l′ and s = s′. The leaf to which is attached P3 we denote by x. By Observation
1 we have x ∈ A(T ′). It is easy to see that D′ ∪ {v, w} is a DOIDS of the tree T .
Thus γoi

d
(T ) ≤ γoi

d
(T ′) + 2. Now let us observe that there exists a γoi

d
(T )-set

that does not contain the vertex u. Let D be such a set. By Observations 1
and 2 we have w, v ∈ D. Observe that D \ {v, w} is a DOIDS of the tree T ′.
Therefore γoi

d
(T ′) ≤ γoi

d
(T )− 2. We now conclude that γoi

d
(T ) = γoi

d
(T ′) + 2. We

get γoi

d
(T ) = |A(T )| = |A(T ′)|+ 2 = (2n′ + l′ + s′)/3 + 2 = (2n− 6 + l+ s)/3 + 2

= (2n+ l + s)/3.

We now establish the main result, an upper bound on the double outer-
independent domination number of a tree together with the characterization
of the extremal trees.

Theorem 4 If T is a tree of order n, with l leaves and s support vertices,
then γoi

d
(T ) ≤ (2n+ l + s)/3 with equality if and only if T ∈ T .

Proof. If diam(T ) = 1, then T = P2. We have γ
oi

d
(T ) = 2 < (4 + 2 + 2)/3

= (2n + l + s)/3. Now suppose that diam(T ) ≥ 2. Thus the order n of the
tree T is at least three. The result we obtain by the induction on the number n.
Assume that the theorem is true for every tree T ′ of order n′ < n, with l′ leaves
and s′ support vertices.
First suppose that some support vertex of T , say x, is strong. Let y and z be

leaves adjacent to x. Let T ′ = T − y. We have n′ = n− 1, l′ = l − 1 and s′ = s.
Let D′ be any γoi

d
(T ′)-set. By Observation 2 we have x ∈ D′. It is easy to see
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that D′ ∪ {y} is a DOIDS of the tree T . Thus γoi

d
(T ) ≤ γoi

d
(T ′) + 1. We now get

γoi

d
(T ) ≤ γoi

d
(T ′)+1 ≤ (2n′+l′+s′)/3+1 = (2n−2+l−1+s)/3+1 = (2n+l+s)/3.

If γoi

d
(T ) = (2n + l + s)/3, then obviously γoi

d
(T ′) = (2n′ + l′ + s′)/3. By the

inductive hypothesis we have T ′ ∈ T . The tree T can be obtained from T ′ by
operation O1. Thus T ∈ T . Henceforth, we can assume that every support vertex
of T is weak.
We now root T at a vertex r of maximum eccentricity diam(T ). Let t be

a leaf at maximum distance from r, and let v be the parent of t in the rooted
tree. If diam(T ) ≥ 3, then let u be the parent of v. If diam(T ) ≥ 4, then let
w be the parent of u. If diam(T ) ≥ 5, then let d be the parent of w. By Tx let
us denote the subtree induced by a vertex x and its descendants in the rooted
tree T .
First suppose that dT (u) ≥ 3. Assume that among the children of u there

is a support vertex, say x, different from v. The leaf adjacent to x we denote
by y. Let T ′ = T − Tv. We have n

′ = n − 2, l′ = l − 1 and s′ = s − 1. Let
D′ be any γoi

d
(T ′)-set. Obviously, D′ ∪ {v, t} is a DOIDS of the tree T . Thus

γoi

d
(T ) ≤ γoi

d
(T ′) + 2. We now get γoi

d
(T ) ≤ γoi

d
(T ′) + 2 ≤ (2n′ + l′ + s′)/3 + 2

= (2n− 4+ l− 1+ s− 1)/3+ 2 = (2n+ l+ s)/3. If γoi

d
(T ) = (2n+ l+ s)/3, then

γoi

d
(T ′) = (2n′ + l′ + s′)/3. By the inductive hypothesis we have T ′ ∈ T . The

tree T can be obtained from T ′ by operation O3. Thus T ∈ T .
Now assume that some child of u, say x, is a leaf. Let T ′ = T − t. We have

n′ = n − 1, l′ = l and s′ = s − 1. Let D′ be any γoi

d
(T ′)-set. By Observation 1

we have v ∈ D′. It is easy to see that D′ ∪ {t} is a DOIDS of the tree T . Thus
γoi

d
(T ) ≤ γoi

d
(T ′) + 1. We now get γoi

d
(T ) ≤ γoi

d
(T ′) + 1 ≤ (2n′ + l′ + s′)/3 + 1

= (2n − 2 + l + s − 1)/3 + 1 = (2n + l + s)/3. If γoi

d
(T ) = (2n + l + s)/3, then

γoi

d
(T ′) = (2n′ + l′ + s′)/3. By the inductive hypothesis we have T ′ ∈ T . The

tree T can be obtained from T ′ by operation O2. Thus T ∈ T .
If dT (u) = 1, then T = P3 = T1 ∈ T . By Lemma 3 we have γoi

d
(T ) = (2n

+l + s)/3. Now consider the case when dT (u) = 2. First assume that there
is a child of w other than u, say k, such that the distance of w to the most
distant vertex of Tk is three. It suffices to consider only the possibility when Tk

is a path P3. Let T
′ = T − Tu. We have n

′ = n− 3, l′ = l− 1 and s′ = s− 1. Let
us observe that there exists a γoi

d
(T ′)-set that does not contain the vertex k. Let

D′ be such a set. The set V (T ′) \D′ is independent, thus w ∈ D′. It is easy to
observe that D′∪{v, t} is a DOIDS of the tree T . Thus γoi

d
(T ) ≤ γoi

d
(T ′)+2. We

now get γoi

d
(T ) ≤ γoi

d
(T ′)+2 ≤ (2n′+ l′+s′)/3+2 = (2n−6+ l−1+s−1)/3+2

= (2n+ l + s)/3− 2/3 < (2n+ l + s)/3.
Now suppose that w is adjacent to a leaf. Let T ′ = T−Tu. We have n

′ = n−3,
l′ = l − 1 and s′ = s − 1. Let D′ be any γoi

d
(T ′)-set. By Observation 2 we have

w ∈ D′. It is easy to observe that D′ ∪ {v, t} is a DOIDS of the tree T . Thus
γoi

d
(T ) ≤ γoi

d
(T ′) + 2. We now get γoi

d
(T ) ≤ γoi

d
(T ′) + 2 ≤ (2n′ + l′ + s′)/3 + 2

= (2n−6+ l−1+s−1)/3+2 = (2n+ l+s)/3−2/3 < (2n+ l+s)/3. Henceforth,
we can assume that w is not adjacent to any leaf.
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Now suppose that there is a child of w, say k, such that the distance of w to
the most distant vertex of Tk is two. It suffices to consider only the possibility
when k is a support vertex of degree two. The leaf adjacent to k we denote by l.
Let T ′ = T − Tu − l. We have n′ = n − 4, l′ = l − 1 and s′ = s − 1. Let D′ be
any γoi

d
(T ′)-set. By Observations 1 and 2 we have k, w ∈ D′. It is easy to observe

that D′ ∪ {v, t, l} is a DOIDS of the tree T . Thus γoi

d
(T ) ≤ γoi

d
(T ′) + 3. We now

get γoi

d
(T ) ≤ γoi

d
(T ′) + 3 ≤ (2n′ + l′ + s′)/3 + 3 = (2n− 8 + l − 1 + s− 1)/3 + 3

= (2n+ l + s)/3− 1/3 < (2n+ l + s)/3.
If dT (w) = 1, then T = P4. We have T ∈ T as it can be obtained from P3

by operation O2. By Lemma 3 we have γ
oi

d
(T ) = (2n + l + s)/3. Now consider

the case when dT (w) = 2. Let T ′ = T − Tu. Let D
′ be any γoi

d
(T ′)-set. By

Observation 1 we have w ∈ D′. It is easy to see that D′ ∪ {v, t} is a DOIDS of
the tree T . Thus γoi

d
(T ) ≤ γoi

d
(T ′) + 2. First suppose that d is adjacent to a leaf.

We have n′ = n − 3, l′ = l and s′ = s − 1. We now get γoi

d
(T ) ≤ γoi

d
(T ′) + 2

≤ (2n′+l′+s′)/3+2 = (2n−6+l+s−1)/3+2 = (2n+l+s)/3−1/3 < (2n+l+s)/3.
Now assume that no neighbor of d is a leaf. Let T ′ = T − Tu. We have

n′ = n − 3, l′ = l and s′ = s. We now get γoi

d
(T ) ≤ γoi

d
(T ′) + 2 ≤ (2n′ + l′

+s′)/3 + 2 = (2n− 6 + l + s)/3 + 2 = (2n+ l + s)/3. If γoi

d
(T ) = (2n+ l + s)/3,

then γoi

d
(T ′) = (2n′ + l′ + s′)/3. By the inductive hypothesis we have T ′ ∈ T .

The tree T can be obtained from T ′ by operation O4. Thus T ∈ T .
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