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Abstract

A vertex of a graph is said to dominate itself and all of its neighbors.
A double outer-independent dominating set of a graph G is a set D of ver-
tices of G such that every vertex of G is dominated by at least two vertices
of D, and the set V(G) \ D is independent. The double outer-independent
domination number of a graph G, denoted by v9'(G), is the minimum car-
dinality of a double outer-independent dominating set of G. We prove that
for every nontrivial tree T of order n, with [ leaves and s support vertices
we have 7v5/(T) < (2n + 1+ s)/3, and we characterize the trees attaining
this upper bound.
Keywords: double outer-independent domination, double domination,
tree.
AMS Subject Classification: 05C05, 05C69.

1 Introduction

Let G = (V, E) be a graph. By the neighborhood of a vertex v of G' we mean
the set Ng(v) = {u € V(G): wv € E(G)}. The degree of a vertex v, denoted
by dg(v), is the cardinality of its neighborhood. By a leaf we mean a vertex
of degree one, while a support vertex is a vertex adjacent to a leaf. We say that
a support vertex is strong (weak, respectively) if it is adjacent to at least two
leaves (exactly one leaf, respectively). The path on n vertices we denote by P,.
We say that a subset of V(G) is independent if there is no edge between any two
vertices of this set.
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A vertex of a graph is said to dominate itself and all of its neighbors. A subset
D C V(G) is a dominating set of G if every vertex of GG is dominated by at least
one vertex of D, while it is a double dominating set of G if every vertex of G is
dominated by at least two vertices of D. The domination (double domination,
respectively) number of G, denoted by v(G) (74(G), respectively), is the minimum
cardinality of a dominating (double dominating, respectively) set of G. Double
domination in graphs was introduced by Harary and Haynes [4], and further
studied for example in [1, 3]. For a comprehensive survey of domination in graphs,
see [5, 6].

A subset D C V(@) is a double outer-independent dominating set, abbrevi-
ated DOIDS, of G if every vertex of G is dominated by at least two vertices of D,
and the set V(G) \ D is independent. The double outer-independent domination
number of a graph G, denoted by 79'(G), is the minimum cardinality of a double
outer-independent dominating set of G. A double outer-independent dominat-
ing set of G of minimum cardinality is called a v%'(G)-set. The study of double
outer-independent domination in graphs was initiated in [7].

A 2-dominating set of a graph G is a set D of vertices of G such that every
vertex of V(G) \ D has at least two neighbors in D. The 2-domination number
of G, denoted by 72(G), is the minimum cardinality of a 2-dominating set of G.
Blidia, Chellali, and Favaron [2] proved the following upper bound on the 2-
domination number of a tree. For every nontrivial tree T" of order n with [ leaves
we have 7, (T) < (n+1)/2. They also characterized the extremal trees.

We prove the following upper bound on the double outer-independent dom-
ination number of a tree. For every nontrivial tree T of order n, with [ leaves
and s support vertices we have 79(T) < (2n+ [+ s)/3. We also characterize the
trees attaining this upper bound.

2 Results

Since the one-vertex graph does not have a double outer-independent dominating
set, in this paper, by a tree we mean only a connected graph with no cycle, and
which has at least two vertices.

We begin with the following two straightforward observations.

Observation 1 Fvery leaf of a graph G is in every v4(G)-set.
Observation 2 Every support vertex of a graph G is in every v4(G)-set.

We show that if T" is a nontrivial tree of order n, with [ leaves and s support
vertices, then v (T') is bounded above by (2n+1+s)/3. For the purpose of char-
acterizing the trees attaining this bound we introduce a family 7 of trees T' = T},
that can be obtained as follows. Let 17 be a path P3; with leaves labeled x and z,
and the support vertex labeled y. Let A(Ty) = {z,y,z}. Let H; be a path P,
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with vertices labeled u and v. Let finally Hy be a path P; with leaves labeled u
and w, and the support vertex labeled v. If k is a positive integer, then T}, can
be obtained recursively from T}, by one of the following operations.

e Operation O;: Attach a vertex, say z, by joining it to a support vertex

e Operation O,: Attach a vertex, say z, by joining it to a leaf of T} adjacent
to a strong support vertex. Let A(Ty11) = A(Ty) U{z}.

e Operation Oz: Attach a copy of H; by joining the vertex u to a vertex
of T which is not a leaf and is adjacent to a support vertex. Let A(Tji1)
= A(Ty) U{u,v}.

e Operation Oy4: Attach a copy of Hs by joining the vertex u to a leaf of T,
adjacent to a weak support vertex. Let A(Ty41) = A(T) U {v, w}.

We now prove that for every tree T' of the family 7, the set A(T) defined
above is a DOIDS of minimum cardinality equal to (2n + 1+ s)/3.

Lemma 3 If T € T, then the set A(T) defined above is a v3(T)-set of size
(2n+1+s)/3.

Proof. We use the terminology of the construction of the trees T" = Ty, the
set A(T), and the graphs H; and H, defined above. To show that A(T) is
a v9'(T)-set of cardinality (2n +1+ s)/3 we use the induction on the number k of
operations performed to construct the tree T. If T'=T; = P3, then (2n+1+s)/3
=(6+2+1)/3=3=|A(T)| =~9(T). Let k > 2 be an integer. Assume that
the result is true for every tree 7" = T}, of the family 7 constructed by k& — 1
operations. For a given tree T”, let n’ denote its order, I’ the number of its leaves,
and s’ the number of support vertices. Let T" = Ty, 1 be a tree of the family T
constructed by k operations.

First assume that T is obtained from 7" by operation O;. We have n = n/+1,
I =10+1and s = The vertex to which is attached z we denote by x. Let y be
a leaf adjacent to = and different from z. By Observation 2 we have = € A(T").
It is easy to see that A(T) = A(T") U {z} is a DOIDS of the tree 7. Thus
Y9(T) < 49(T") + 1. Now let D be any 5 (T)-set. By Observations 1 and 2
we have z,y,z € D. It is easy to see that D \ {z} is a DOIDS of the tree 7".
Therefore v/(T") < 79(T) — 1. We now conclude that v5'(T) = v5(T") + 1. We
get v9(T) = |A(T)| = |A(T")|+1 = 2n'+1'+5) /341 = (2n—241—1+s)/3+1
=2n+1+59)/3.

Now suppose that 7" is obtained from 7" by operation Oy. We have n = n'+1,
I =1 and s = ¢ + 1. The leaf to which is attached z we denote by x. By y we
denote the neighbor of x other than z. By Observation 1 we have z € A(T").



It is easy to see that A(T) = A(T") U {z} is a DOIDS of the tree 7. Thus
YIT) < A9(T") + 1. Now let D be any 79 (T)-set. By Observations 1 and 2
we have z,xz,y € D. It is easy to see that D \ {z} is a DOIDS of the tree T".
Therefore v5/(T") < 79(T) — 1. We now conclude that v5(T) = v5(T") + 1. We
get Y3H(T) = |A(T)| = |A(T")|+1 = 2n'+1U'+¢)/3+1 = 2n—2+1+s—1)/3+1
=2n+1+59)/3.

Now assume that T is obtained from 7" by operation O3. We have n = n'+ 2,
I=10+1ands=s+1. The vertex to which is attached P, we denote by x. Let
y be a support vertex adjacent to x, and let z be a leaf adjacent to y. Obviously,
A(T) = A(T') U {u,v} is a DOIDS of the tree T. Thus v5(T) < ~3(T") + 2.
Now let D be any 75 (T')-set. By Observations 1 and 2 we have v, z,u,y € D.
If x € D, then it is easy to see that D \ {u,v} is a DOIDS of the tree 7”. Now
suppose that x ¢ D. Let a denote a neighbor of x other than u and y. The set
V(T) \ D is independent, thus a € D. Let us observe that now also D \ {u,v}
is a DOIDS of the tree 7" as the vertex z is still dominated at least twice.
Therefore v5(T") < v34(T) — 2. We now conclude that 75 (T) = v3/(T") + 2. We
get v9U(T) = |A(T)| = |A(T) |42 = (2n'+1'+5") /3+2 = (2n—4+]—14s—1)/3+2
=2n+1+59)/3.

Now assume that 7" is obtained from 7" by operation Q4. We have n = n’+3,
[ =1"and s = §'. The leaf to which is attached P;3 we denote by x. By Observation
1 we have x € A(T"). It is easy to see that D' U {v,w} is a DOIDS of the tree T
Thus v5(T) < 75(T") + 2. Now let us observe that there exists a 75 (T)-set
that does not contain the vertex u. Let D be such a set. By Observations 1
and 2 we have w,v € D. Observe that D \ {v,w} is a DOIDS of the tree T".
Therefore v5(T") < 79(T) — 2. We now conclude that v5(T) = v5(T") + 2. We
get Y9U(T) = |A(T)| = |[A(T)|+2=02n +1'+5)/34+2=2n—6+1+5)/3+2
=2n+1+59)/3. ]

We now establish the main result, an upper bound on the double outer-
independent domination number of a tree together with the characterization
of the extremal trees.

Theorem 4 If T is a tree of order n, with | leaves and s support vertices,
then v5(T) < (2n + 1 + s)/3 with equality if and only if T € T.

Proof. If diam(7) = 1, then T = P,. We have 79/(T) =2 < (4+2+2)/3
= (2n 4+ 1 + s)/3. Now suppose that diam(7") > 2. Thus the order n of the
tree T is at least three. The result we obtain by the induction on the number n.
Assume that the theorem is true for every tree 7" of order n’ < n, with I’ leaves
and s’ support vertices.

First suppose that some support vertex of 7', say z, is strong. Let y and z be
leaves adjacent to z. Let 7" =T —y. We haven'’ =n—1,I'=1—1and s’ = s.
Let D’ be any 79'(T")-set. By Observation 2 we have x € D'. It is easy to see



that D' U {y} is a DOIDS of the tree T. Thus 75(T) < v5(T") + 1. We now get
YIT) < AT +1 < 2n'+1'+5") /341 = (2n—2+1—1+45s) /341 = (2n+1+s5)/3.
If v9(T) = (2n + 1 + s)/3, then obviously v5(T") = (2n' + ' + s')/3. By the
inductive hypothesis we have 7" € T. The tree T' can be obtained from 7" by
operation O;. Thus T' € T. Henceforth, we can assume that every support vertex
of T' is weak.

We now root T at a vertex r of maximum eccentricity diam(7"). Let ¢ be
a leaf at maximum distance from r, and let v be the parent of ¢ in the rooted
tree. If diam(7") > 3, then let u be the parent of v. If diam(7") > 4, then let
w be the parent of u. If diam(7T") > 5, then let d be the parent of w. By T} let
us denote the subtree induced by a vertex x and its descendants in the rooted
tree T'.

First suppose that dr(u) > 3. Assume that among the children of u there
is a support vertex, say x, different from v. The leaf adjacent to x we denote
by y. Let 7" =T —T,. Wehaven' =n—2,'=1—1and s’ = s — 1. Let
D’ be any 75 (T")-set. Obviously, D’ U {v, ¢} is a DOIDS of the tree T. Thus
YI(T) < AG(T") + 2. We now get v3/(T) < A59(T")+2 < (2n' +1' +5)/3+2
=(2n—4+1—-1+s—1)/34+2=(2n+1+5)/3. It y5(T) = (2n+1+s)/3, then
Y(T") = (2’ + ' + §')/3. By the inductive hypothesis we have 7" € T. The
tree T can be obtained from 7" by operation Q3. Thus T € T.

Now assume that some child of u, say x, is a leaf. Let 7" =T —t. We have
n=n—1,'=1and s =s—1. Let D' be any v3(T")-set. By Observation 1
we have v € D'. It is easy to see that D’ U {t} is a DOIDS of the tree 7. Thus
13 (T) < 7g(T") + 1. We now get v3(T) < 7g'(T") +1 < (20" + 1"+ §')/3 + 1
=2n—-241+s-1)/3+1=02n+1+s)/3. If19(T) = (2n+ 1 + 5)/3, then
YI(T") = (2n' + ' + §')/3. By the inductive hypothesis we have 7" € T. The
tree T can be obtained from 7" by operation Oy. Thus T € T.

If dr(u) = 1, then T = Py = Ty € T. By Lemma 3 we have 79(T) = (2n
+1l + s)/3. Now consider the case when dp(u) = 2. First assume that there
is a child of w other than u, say k, such that the distance of w to the most
distant vertex of T}, is three. It suffices to consider only the possibility when T}
isapath P;. Let " =T —T,. Wehaven'=n—3,I'=1—1and ¢ = s—1. Let
us observe that there exists a 73(7")-set that does not contain the vertex k. Let
D' be such a set. The set V(T”) \ D’ is independent, thus w € D'. It is easy to
observe that D' U{v,t} is a DOIDS of the tree T. Thus v5(T) < 75(T") +2. We
now get v5(T) <A9(T)+2 < (2n'+1U'+5)/3+2=(2n—6+1—1+s—1)/3+2
=2n+1+s)/3—-2/3<(2n+1+5s)/3.

Now suppose that w is adjacent to a leaf. Let 7" = T—T,. We have n’ = n—3,
I!'=1—1and s =s—1. Let D' be any 79 (1")-set. By Observation 2 we have
w € D'. Tt is easy to observe that D' U {v,t} is a DOIDS of the tree T". Thus
YIT) < A9(T") + 2. We now get 79(T) < A9(T") +2 < (20’ +1' +§)/3+ 2
=2n—64+1—-1+5—-1)/34+2=(2n+1+5)/3—-2/3 < (2n+1+5s)/3. Henceforth,
we can assume that w is not adjacent to any leaf.
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Now suppose that there is a child of w, say k, such that the distance of w to
the most distant vertex of T} is two. It suffices to consider only the possibility
when k is a support vertex of degree two. The leaf adjacent to £ we denote by [.
Let " =T —-T,—1. Wehaven' =n—4,1'"=1—1and s’ =s—1. Let D’ be
any 79 (T")-set. By Observations 1 and 2 we have k,w € D’. It is easy to observe
that D' U {v,t,1} is a DOIDS of the tree T. Thus v3(T) < v5(T") + 3. We now
get Y9(T) <AF(T)+3< (2" +1'+8)/3+3=2n—8+1—1+s—1)/3+3
=02n+1+s)/3—-1/3<(2n+1+s)/3.

If dp(w) = 1, then T = P,. We have T' € T as it can be obtained from P
by operation Q. By Lemma 3 we have 75/(T) = (2n + [ + s)/3. Now consider
the case when dp(w) = 2. Let T" = T — T,. Let D’ be any v5(T")-set. By
Observation 1 we have w € D'. It is easy to see that D" U {v,t} is a DOIDS of
the tree T. Thus v9(T) < v5(T') + 2. First suppose that d is adjacent to a leaf.
We have n’ =n —3,' =1 and s = s — 1. We now get 79/(T) < v9(T") + 2
< (2n'+U'+5") /342 = (2n—6+1+5—1)/3+2 = (2n+I1+s)/3—1/3 < (2n+1+s)/3.

Now assume that no neighbor of d is a leaf. Let 7" = T — T,,. We have
n=n-310=1and s =s. We now get 79(T) < v5(T") +2 < (2n' + I
+8)/34+42=02n—64+1+5)/3+2=02n+1+5)/3. It y9(T) = (2n+1+s)/3,
then v9(T") = (2n’ + I + §')/3. By the inductive hypothesis we have 7" € T.
The tree T' can be obtained from 7" by operation Q4. Thus T' € T. n
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