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Abstract. The topic is the hat problem in which each of n players is ran-

domly fitted with a blue or red hat. Then everybody can try to guess

simultaneously his own hat color by looking at the hat colors of the other

players. The team wins if at least one player guesses his hat color correctly,

and no one guesses his hat color wrong; otherwise the team loses. The aim

is to maximize the probability of a win. In this version every player can see

everybody excluding himself. We consider such a problem on a graph, where

vertices correspond to players, and a player can see each player to whom he

is connected by an edge. The hat problem on a graph was solved for trees

and for the cycle on four vertices. Then Uriel Feige conjectured that for

any graph the maximum chance of success in the hat problem is equal to

the maximum chance of success for the hat problem on the maximum clique

in the graph. He provided several results that support this conjecture, and

solved the hat problem for bipartite graphs and planar graphs containing

a triangle. We make a step towards proving the conjecture of Feige. We

solve the hat problem on all cycles of odd length. Of course, the maximum

chance of success for the hat problem on the cycle on three vertices is three

fourths. We prove that the hat number of every odd cycle of length at least

five is one half, which is consistent with the conjecture of Feige.

1. Introduction

In the hat problem, a team of n players enters a room and a blue or red hat is

randomly placed on the head of each player. Each player can see the hats of all

of the other players but not his own. No communication of any sort is allowed,

except for an initial strategy session before the game begins. Once they have had

a chance to look at the other hats, each player must simultaneously guess the

color of his own hat or pass. The team wins if at least one player guesses his hat

color correctly and no one guesses his hat color wrong; otherwise the team loses.

The aim is to maximize the probability of a win.
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The hat problem with seven people called ”seven prisoners puzzle” was for-

mulated by T. Ebert in his Ph.D. Thesis [4]. There are known many variations

of the hat problem (for a comprehensive list, see [9]). For example in [6] there

was considered a variation in which players do not have to guess their hat colors

simultaneously. In [2] there was considered a variation in which passing is not

allowed, thus everybody has to guess his hat color. The aim is to maximize the

number of correct guesses. N. Alon [1] has proved a lower bound on the chance of

success for the generalized hat problem with n people and q colors. This problem

was also studied in [10]. The hat problem with three people was the subject of

an article in The New York Times [11].

We consider the hat problem on a graph, where vertices correspond to players

and a player can see each player to whom he is connected by an edge. This

variation of the hat problem was first considered in [7]. There were proven some

general theorems about the hat problem on a graph, and the problem was solved

on trees. Additionally, there was considered the hat problem on a graph such that

the only known information are degrees of vertices. In [8] the problem was solved

on the cycle C4. Uriel Feige [5] conjectured that for any graph the maximum

chance of success in the hat problem is equal to the maximum chance of success

for the hat problem on the maximum clique in the graph. He provided several

results that support this conjecture, and solved the hat problem for bipartite

graphs and planar graphs containing a triangle. Feige proved that if a graph is

such that the chromatic number equals the number of vertices of the maximum

clique, then the conjecture is true. A well known class of graphs for which the

chromatic number equals the number of vertices of the maximum clique is that

of perfect graphs (where that equality holds not only for the graph, but also for

all its subgraphs). Thus Feige solved the hat problem for all perfect graphs. By

the strong perfect graph theorem [3], every graph for which neither it nor its

complement contains an induced odd cycle of length at least five is perfect. We

solve the hat problem on all cycles of odd length. Of course, the maximum chance

of success for the hat problem on the cycle on three vertices is three fourths. We

prove that the hat number of every odd cycle of length at least five is one half,

which is consistent with the conjecture of Feige.

2. Preliminaries

For a graph G, the set of vertices and the set of edges we denote by V (G)

and E(G), respectively. If H is a subgraph of G, then we write H ⊆ G. The

path (cycle, respectively) on n vertices we denote by Pn (Cn, respectively). The
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neighborhood of a vertex v of G, that is {x ∈ V (G) : vx ∈ E(G)}, we denote by

NG(v). We say that a vertex v is neighborhood-dominated if there is some other

vertex u such that NG(v) ⊆ NG(u).

Let f : X → Y be a function. If for every x ∈ X we have f(x) = y, then we

write f ≡ y.

Let V (G) = {v1, v2, . . . , vn}. By Sc = {1, 2} we denote the set of colors, where

1 corresponds to the blue color, and 2 corresponds to the red color.

By a case for a graph G we mean a function c : V (G) → {1, 2}, where c(vi)

means color of vertex vi. The set of all cases for the graph G we denote by C(G),

of course |C(G)| = 2|V (G)|. If c ∈ C(G), then to simplify notation, we write

c = c(v1)c(v2) . . . c(vn) instead of c = {(v1, c(v1)), (v2, c(v2)), . . . , (vn, c(vn))}. For

example, if a case c ∈ C(C5) is such that c(v1) = 2, c(v2) = 1, c(v3) = 1, c(v4) = 2,

and c(v5) = 1, then we write c = 21121.

By a situation of a vertex vi we mean a function si : V (G) → Sc ∪ {0}
= {0, 1, 2}, where si(vj) ∈ Sc if vi and vj are adjacent, and 0 otherwise. The

set of all possible situations of vi in the graph G we denote by Sti(G), of course

|Sti(G)| = 2dG(vi). If si ∈ Sti(G), then for simplicity of notation, we write si
= si(v1)si(v2) . . . si(vn) instead of si = {(v1, si(v1)), (v2, si(v2)), . . . , (vn, si(vn))}.
For example, if s3 ∈ St3(C5) is such that s3(v2) = 2 and s3(v4) = 1, then we

write s3 = 02010.

By a guessing instruction of a vertex vi ∈ V (G) we mean a function gi : Sti(G)

→ Sc ∪ {0} = {0, 1, 2}, which for a given situation gives the color vi guesses it

is, or 0 if vi passes. Thus guessing instruction is a rule determining behavior of

a vertex in every situation. We say that vi never guesses its color if vi passes in

every situation, that is, gi ≡ 0. We say that vi always guesses its color if vi guesses

its color in every situation, that is, for every si ∈ Sti(G) we have gi(si) ∈ {1, 2}
(gi(si) 6= 0, equivalently).

Let c be a case, and let si be the situation (of vertex vi) corresponding to that

case. The guess of vi in the case c is correct (wrong, respectively) if gi(si) = c(vi)

(0 6= gi(si) 6= c(vi), respectively). By result of the case c we mean a win if at

least one vertex guesses its color correctly, and no vertex guesses its color wrong,

that is, gi(si) = c(vi) (for some i) and there is no j such that 0 6= gj(sj) 6= c(vj).

Otherwise the result of the case c is a loss.

By a strategy for the graph G we mean a sequence (g1, g2, . . . , gn), where gi is

the guessing instruction of vertex vi. The family of all strategies for a graph G

we denote by F(G).
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If S ∈ F(G), then the set of cases for the graph G for which the team

wins (loses, respectively) using the strategy S we denote by W (S) (L(S), re-

spectively). By the chance of success of the strategy S we mean the number

p(S) = |W (S)|/|C(G)|. By the hat number of the graph G we mean the number

h(G) = max{p(S) : S ∈ F(G)}. We say that a strategy S is optimal for the

graph G if p(S) = h(G). The family of all optimal strategies for the graph G we

denote by F0(G).

By solving the hat problem on a graph G we mean finding the number h(G).

The following four results are from [7].

Theorem 2.1. If H is a subgraph of G, then h(H) ≤ h(G).

Corollary 2.2. For every graph G we have h(G) ≥ 1/2.

The following theorem is the solution of the hat problem on paths.

Theorem 2.3. For every path Pn we have h(Pn) = 1/2.

Now there is a sufficient condition for the removal of a vertex of a graph without

changing its hat number.

Theorem 2.4. Let G be a graph, and let v be a vertex of G. If there exists

a strategy S ∈ F0(G) such that v never guesses its color, then h(G) = h(G− v).

Uriel Feige [5] proved the following result.

Lemma 2.5. Let G be a graph. If v is a neighborhood-dominated vertex of G,

then h(G) = h(G− v).

3. Results

To solve the hat problem on odd cycles of length at least five, we need the fact

that h(C5) = 1/2, see Lemma 3.2. Now we prove our main result.

Theorem 3.1. If n ≥ 5 is an odd integer, then h(Cn) = 1/2.

Proof. We obtain the result by induction on the length of the cycle. For n = 5

the theorem is true by Lemma 3.2. Now assume that n ≥ 7 is an odd integer, and

h(Cn−2) = 1/2. Let Hn = Cn ∪ v1v4. By Theorem 2.1 we have h(Hn) ≥ h(Cn).

Observe that NHn
(v3) ⊂ NHn

(v1). Let H ′n = Hn − v3. By Lemma 2.5 we get

h(Hn) = h(H ′n). Moreover, since NH′
n
(v2) ⊂ NH′

n
(vn), again by Lemma 2.5 we

get h(H ′n) = h(H ′n − v2). Let us observe that the graph H ′n − v2 is isomorphic to

the cycle Cn−2. By the inductive hypothesis we have h(Cn−2) = 1/2. Now we get

h(Cn) ≤ h(Hn) = h(H ′n) = h(Cn−2) = 1/2. On the other hand, by Corollary 2.2

we have h(Cn) ≥ 1/2. �
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Now we solve the hat problem on the cycle on five vertices.

Lemma 3.2. h(C5) = 1/2.

Proof. Let S be an optimal strategy for C5. If some vertex, say vi, never guesses

its color, then by Theorem 2.4 we have h(C5) = h(C5 − vi). Since C5 − vi = P4

and h(P4) = 1/2 (by Theorem 2.3), we get h(C5) = 1/2. Now assume that every

vertex guesses its color.

Let us consider a guessing instruction of a vertex. If in every case in which

this instruction gives a correct guess some other vertex also guesses its color, then

we say that the guessing instruction is dominated. Let us observe that we do

not have to consider strategies with a dominated guessing instruction because

such instruction cannot improve the chance of success. Even if it is the only one

guess of a vertex, then by Theorem 2.4 we get p(S) ≤ h(C5 − vi) = h(P4) = 1/2

implying that h(C5) = 1/2.

Now we explain a way in which the result can be easily verified using computer.

We consider only guessing instructions which are not passing. First consider

strategies S with exactly one instruction for every vertex. There are exactly 8

possible instructions for each vertex (because of the colors of two neighbors and

the guess it is going to make). Thus the total number of possibilities for S is

85 = 215. Let us observe that from a strategy we can obtain a group of 320 (not

necessarily distinguishable) symmetrical strategies. We can perform each one of

the following operations: rotating the vertices (gives 5 possibilities), reflecting

the vertices (gives 2 possibilities), and relabelling the colors of the vertices (gives

25 = 32 possibilities). Reducing modulo this symmetry group gives only 120

possibilities for S. Now for every one of these possibilities we check the number

of cases in which some vertex guesses its color wrong. If in at least 16 cases some

vertex guesses its color wrong, then the team loses for at least 16 cases implying

that p(S) ≤ 1/2. For 61 of those 120 strategies in at least 16 cases some vertex

guesses its color wrong. Therefore it suffices to consider only the remaining 59

strategies. Now we reduce the set of possibilities by using the idea of dominance

from the previous paragraph. In this way we exclude 37 strategies, having only

22 strategies left. Now for every one of them we check the number of cases in

which the team so far wins, that is, cases in which some vertex guesses its color

correctly while at the same time no vertex guesses its color wrong. The best

score among those 22 strategies is 12 successes. Thus we now examine adding an

additional instruction to each one of the 22 strategies. Again we exclude strategies

for which the team loses for at least 16 cases, or some guessing instruction is

dominated. As a result there are only 23 strategies (each one consisting of six
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guessing instructions) left. Among them, the best score of cases for which the

team wins is 12. Now we try to add an additional instruction to each one of the 23

strategies. We verify that for every one of them the team loses for at least 16 cases,

or some guessing instruction is dominated. This implies that for every strategy

S ∈ F(C5) we have p(S) ≤ 1/2. Now, by definition we get h(C5) = 1/2. �
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the proof of Lemma 3.2.
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