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Abstract. A vertex of a graph is said to dominate itself and all of its

neighbors. A subset D ⊆ V (G) is a 2-dominating set of G if every vertex

of V (G) \D is dominated by at least two vertices of D, while it is a double

dominating set of G if every vertex of G is dominated by at least two ver-

tices of D. The 2-domination (double domination, respectively) number of

a graph G is the minimum cardinality of a 2-dominating (double dominating,

respectively) set of G. We characterize all trees with the double domination

number equal to the 2-domination number plus one.

1. Introduction

Let G = (V,E) be a graph. By the neighborhood of a vertex v of G we mean

the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v, denoted by

dG(v), is the cardinality of its neighborhood. By a leaf we mean a vertex of degree

one, while a support vertex is a vertex adjacent to a leaf. We say that a support

vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly

one leaf, respectively). We say that a subset of V (G) is independent if there is no

edge between every two its vertices. The path on n vertices we denote by Pn. Let

T be a tree, and let v be a vertex of T . We say that v is adjacent to a path Pn if

there is a neighbor of v, say x, such that the subtree resulting from T by removing

the edge vx and which contains the vertex x, is a path Pn. By a star we mean

a connected graph in which exactly one vertex has degree greater than one. By

a double star we mean a graph obtained from a star by joining a positive number

of vertices to one of its leaves. Let uv be an edge of a graph G. By subdividing

the edge uv we mean removing it, and adding a new vertex, say x, along with

two new edges, ux and vx. By a subdivided star we mean a graph obtained from

a star by subdividing each one of its edges.
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A subset D ⊆ V (G) is a dominating set of G if every vertex of V (G) \ D
has a neighbor in D, while it is a 2-dominating set, abbreviated 2DS, of G if

every vertex of V (G) \ D has at least two neighbors in D. The domination (2-

domination, respectively) number of G, denoted by γ(G) (γ2(G), respectively), is

the minimum cardinality of a dominating (2-dominating, respectively) set of G.

A 2-dominating set of G of minimum cardinality is called a γ2(G)-set. Note that

2-domination is a type of multiple domination in which each vertex, which is not

in the dominating set, is dominated at least k times for a fixed positive integer k.

Multiple domination was introduced by Fink and Jacobson [5], and further studied

for example in [3, 6, 11, 12]. For a comprehensive survey of domination in graphs,

see [9, 10].

A vertex of a graph is said to dominate itself and all of its neighbors. A subset

D ⊆ V (G) is a double dominating set, abbreviated DDS, of G if every vertex of

G is dominated by at least two vertices of D. The double domination number

of G, denoted by γd(G), is the minimum cardinality of a double dominating set

of G. A double dominating set of G of minimum cardinality is called a γd(G)-

set. Double domination in graphs was introduced by Harary and Haynes [8], and

further studied for example in [1, 4, 7].

It is not difficult to observe that every double dominating set of a graph G is

a 2-dominating set of this graph. Thus γd(G) ≥ γ2(G), for every graph G.

A paired dominating set of a graph is a dominating set of vertices whose induced

subgraph has a perfect matching. The authors of [2] characterized all trees with

equal double domination and paired domination numbers.

We characterize all trees with the double domination number equal to the

2-domination number plus one.

2. Results

Since the one-vertex graph does not have double dominating set, in this paper,

by a tree we mean only a connected graph with no cycle, and which has at least

two vertices.

We begin with the following three straightforward observations.

Observation 2.1. Every leaf of a graph G is in every γ2(G)-set.

Observation 2.2. Every leaf of a graph G is in every γd(G)-set.

Observation 2.3. Every support vertex of a graph G is in every γd(G)-set.
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It is easy to see that γd(P2) = γ2(P2) = 2. Now we prove that for every tree

different than P2, the double domination number is greater than the 2-domination

number.

Lemma 2.4. For every tree T 6= P2 we have γd(T ) > γ2(T ).

Proof. Since T 6= P2, we have diam(T ) ≥ 2. If diam(T ) = 2, then T is

a star K1,m. We have γd(T ) = m + 1 > m = γ2(T ). Now let us assume that

diam(T ) = 3. Thus T is a double star. Let n mean the order of the tree T . We

have γd(T ) = n > n− 1 ≥ γ2(T ).

Now assume that diam(T ) ≥ 4. Thus the order of the tree T is an integer

n ≥ 5. The result we obtain by the induction on the number n. Assume that the

lemma is true for every tree T ′ of order n′ < n.

First assume that some support vertex of T , say x, is strong. Let y and z

be leaves adjacent to x. Let T ′ = T − y. Let D′ be any γ2(T ′)-set. Of course,

D′ ∪ {y} is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T ′) + 1. Now let D be any

γd(T )-set. By Observations 2.2 and 2.3 we have y, z, x ∈ D. It is easy to see

that D \ {y} is a DDS of the tree T ′. Therefore γd(T ′) ≤ γd(T )− 1. Now we get

γd(T ) ≥ γd(T ′) + 1 > γ2(T ′) + 1 ≥ γ2(T ). Henceforth, we can assume that every

support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity diam(T ). Let t be a leaf

at maximum distance from r, v be the parent of t, u be the parent of v, and w

be the parent of u in the rooted tree. By Tx let us denote the subtree induced by

a vertex x and its descendants in the rooted tree T .

First assume that u is adjacent to a leaf, say x. Let T ′ = T−Tv. Let D′ be any

γ2(T ′)-set. Of course, D′∪{v, t} is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T ′)+2.

Now let D be any γd(T )-set. By Observations 2.2 and 2.3 we have t, x, v, u ∈ D. It

is easy to see that D\{v, t} is a DDS of the tree T ′. Therefore γd(T ′) ≤ γd(T )−2.

Now we get γd(T ) ≥ γd(T ′) + 2 > γ2(T ′) + 2 ≥ γ2(T ).

Now assume that among the descendants of u there is a support vertex, say x,

different than v. The leaf adjacent to x we denote by y. Let T ′ = T − Tv. Let us

observe that there exists a γ2(T ′)-set that contains the vertex u. Let D′ be such

a set. It is easy to see that D′∪{t} is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T ′)+1.

Now let D be any γd(T )-set. By Observations 2.2 and 2.3 we have t, y, v, x ∈ D.

If u ∈ D, then it is easy to see that D\{v, t} is a DDS of the tree T ′. Now assume

that u /∈ D. Let us observe that D∪{u}\{v, t} is a DDS of the tree T ′. Therefore

γd(T ′) ≤ γd(T )− 1. Now we get γd(T ) ≥ γd(T ′) + 1 > γ2(T ′) + 1 ≥ γ2(T ).

Now assume that dT (u) = 2. Let T ′ = T − Tv. Let D′ be any γ2(T ′)-set.

By Observation 2.1 we have u ∈ D′. It is easy to see that D′ ∪ {t} is a 2DS
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of the tree T . Thus γ2(T ) ≤ γ2(T ′) + 1. Now let D be any γd(T )-set. By

Observations 2.2 and 2.3 we have t, v ∈ D. Let us observe that both vertices u

and w cannot at the same time be outside D as the vertex u has to be dominated

at least twice. If u,w ∈ D, then it is easy to see that D \ {v, t} is a DDS of the

tree T ′. If u ∈ D and w /∈ D, then it is easy to observe that D ∪ {w} \ {v, t}
is a DDS of the tree T ′. Similarly, if w ∈ D and u /∈ D, then D ∪ {u} \ {v, t}
is a DDS of the tree T ′. Now we conclude that γd(T ′) ≤ γd(T ) − 1. We get

γd(T ) ≥ γd(T ′) + 1 > γ2(T ′) + 1 ≥ γ2(T ). �

Now we give a necessary condition for that the double domination number of

a tree is equal to its 2-domination number plus one.

Lemma 2.5. If γd(T ) = γ2(T ) + 1, then for every γd(T )-set D, every vertex of

V (T ) \D has degree two.

Proof. Suppose that there exists a γd(T )-set D that does not contain a vertex

of T , say x, which has degree different than two. By Observation 2.2, every leaf

belongs to the set D. Therefore dT (x) ≥ 3. First assume that some neighbor

of x, say y, also does not belong to the set D. By T1 and T2 we denote the trees

resulting from T by removing the edge xy. Let us observe that each one of those

trees has at least three vertices. We define D1 = D∩V (T1) and D2 = D∩V (T2).

Let us observe that D1 is a DDS of the tree T1 and D2 is a DDS of the tree T2.

Let D′
1 be any γ2(T1)-set and let D′

2 be any γ2(T2)-set. By Lemma 2.4 we have

γd(T1) ≥ γ2(T1) + 1 and γd(T2) ≥ γ2(T2) + 1. Of course, D′
1 ∪ D′

2 is a 2DS of

the tree T . Thus γ2(T ) ≤ |D′
1 ∪ D′

2|. Now we get γd(T ) = |D| = |D1 ∪ D2|
= |D1| + |D2| ≥ γd(T1) + γd(T2) ≥ γ2(T1) + 1 + γ2(T2) + 1 = |D′

1| + |D′
2| + 2

= |D′
1 ∪D′

2|+ 2 ≥ γ2(T ) + 2 > γ2(T ) + 1, a contradiction.

Now assume that all neighbors of x belong to the set D. First assume that

there is a neighbor of x, say y, such that each one of the two trees resulting from

T by removing the edge xy has at least three vertices. We get a contradiction

similarly as when some neighbor of x does not belong to the set D. Now assume

that there is no neighbor of x such that each one of the two trees resulting from

T by removing the edge between them has at least three vertices. This implies

that T is a subdivided star of order at least seven. Let n mean the number of

vertices of the tree T . We have γd(T ) = n − 1 = (n + 1)/2 + 1 + (n − 5)/2

= γ2(T ) + 1 + (n− 5)/2 > γ2(T ) + 1, a contradiction. �

Let T be a tree. If T is a path, then let C(T ) be a one-element set containing

a support vertex of T . If T is not a path, then let C(T ) be a set of vertices of T

which have degree at least three. We say that two vertices of C(T ) are linked if
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the path joining them in T is such that all its interior vertices have degree two.

Then the path is called a link. The length of a link is the number of its edges.

Paths joining leaves of T to vertices of C(T ) we call chains. The length of a chain

is the number of its edges.

Let T0 be a family of trees T such that every link has length two, every chain

has length one or three, and each vertex of C(T ) is adjacent to at least one chain

of length one.

Now we prove that for every tree of the family T0, the double domination

number is equal to the 2-domination number plus one.

Lemma 2.6. If T ∈ T0, then γd(T ) = γ2(T ) + 1.

Proof. Let us observe that for any tree T the following algorithm finds a 2-

dominating set of minimum cardinality. Label vertices of T as taken, omitted,

and undecided. Initialize by calling every vertex undecided. Root T at any vertex,

say r. Let v 6= r be a vertex of T , which has not already been decided, and such

that all its children have been decided. If all children of v have been omitted, then

take v. If exactly one child of v has been taken, then omit v and take its parent.

If at least two children of v have been taken, then omit v. When all children of r

are decided, take r if at most one child of r has been taken; otherwise omit r. It

is not very difficult to observe that the taken vertices form a γ2(T )-set.

By Observations 2.2 and 2.3, every DDS of T contains all leaves and support

vertices. Let us observe that the set of all leaves and support vertices is a DDS

of the tree T . Therefore these vertices form a γd(T )-set. Rooting T at the center

vertex of a link, and running the algorithm above we see that a γ2(T )-set contains

all vertices of T excluding support vertices. Let us observe that the number of

non-support vertices of T is one less than the number of all leaves and support

vertices of T . Therefore γd(T ) = γ2(T ) + 1. �

We characterize all trees with the double domination number equal to the 2-

domination number plus one. For this purpose we introduce a family T of trees T

that either belong to the family T0, or can be obtained from an element of T0,

say T ′, in the following way. Let x mean a leaf of T ′. If the neighbor of x is

a strong support vertex or has degree at least three, then we can attach a vertex

by joining it to the leaf x. If the neighbor of x is a strong support vertex, then

we can attach a tree of the family T0 by joining its any leaf to the leaf x.

Now we prove that for every tree of the family T , the double domination

number is equal to the 2-domination number plus one.

Lemma 2.7. If T ∈ T , then γd(T ) = γ2(T ) + 1.
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Proof. If T ∈ T0, then by Lemma 2.6 we have γd(T ) = γ2(T ) + 1. Now assume

that T ∈ T \T0. First assume that T can be obtained from an element of T0, say T ′,

by attaching a vertex, say w, by joining it to a leaf of T ′, say x. The neighbor of

x we denote by y. The vertex y is a strong support vertex or has degree at least

three. Let D′ be any γd(T ′)-set. By Observation 2.2 we have x ∈ D′. It is easy to

see that D′∪{w} is a DDS of the tree T . Thus γd(T ) ≤ γd(T ′) + 1. Rooting T at

the vertex x, and running the earlier algorithm we get a γ2(T )-set which contains

the vertex x. Let D be such a set. By Observation 2.1 we have w ∈ D. It is

easy to see that D \ {w} is a 2DS of the tree T ′. Therefore γ2(T ′) ≤ γ2(T ) − 1.

Now we get γd(T ) ≤ γd(T ′) + 1 = γ2(T ′) + 2 ≤ γ2(T ) + 1. On the other hand, by

Lemma 2.4 we have γd(T ) ≥ γ2(T ) + 1. This implies that γd(T ) = γ2(T ) + 1.

Now assume that T can be obtained from an element of T0, say T ′, by attaching

a tree of the family T0, say H, by joining its leaf, say w, to a leaf of T ′, say x,

adjacent to a strong support vertex, say y. Let z mean a leaf adjacent to y and

different from x. Let D′ be any γd(T ′)-set and let DH be any γd(H)-set. By

Observations 2.2 and 2.3 we have x, y, z ∈ D′ and w ∈ DH . It is easy to observe

that D′ ∪DH \ {x} is a DDS of the tree T . Thus γd(T ) ≤ γd(T ′) + γd(H) − 1.

Rooting T at the vertex x, and running the earlier algorithm we get a γ2(T )-

set that contains the vertices x and w. Let D be such a set. It is easy to see

that D ∩ V (T ′) is a 2DS of the tree T ′ and D ∩ V (H) is a 2DS of the tree H.

Therefore γ2(T ′) + γ2(H) ≤ γ2(T ). Now we get γd(T ) ≤ γd(T ′) + γd(H) − 1

= γ2(T ′) + 1 +γ2(H) + 1− 1 = γ2(T ′) +γ2(H) + 1 ≤ γ2(T ) + 1. This implies that

γd(T ) = γ2(T ) + 1. �

Now we prove that if the double domination number of a tree is equal to its

2-domination number plus one, then the tree belongs to the family T .

Lemma 2.8. Let T be a tree. If γd(T ) = γ2(T ) + 1, then T ∈ T .

Proof. Let nmean the number of vertices of the tree T . We proceed by induction

on this number. If diam(T ) = 1, then T = P2. We have γd(T ) = 2 = γ2(T )

6= γ2(T ) + 1. If diam(T ) = 2, then T is a star. It is easy to see that T ∈ T0 ⊆ T .

Now assume that diam(T ) ≥ 3. Thus the order of the tree T is an integer

n ≥ 4. The result we obtain by the induction on the number n. Assume that the

lemma is true for every tree T ′ of order n′ < n.

First assume that T has a chain of length at least seven, say ending gfedcba,

where a is a leaf. Let T ′ = T − a− b− c− d− e− f . Let D′ be any γ2(T ′)-set.

By Observation 2.1 we have g ∈ D′. It is easy to observe that D′ ∪ {e, c, a} is

a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T ′) + 3. Now let us observe that there
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exists a γd(T )-set that does not contain the vertices c and f . Let D be such a set.

By Observations 2.2 and 2.3 we have a, b ∈ D. The vertex d has to be dominated

twice, thus d, e ∈ D. Observe that D\{e, d, b, a} is a DDS of the tree T ′. Therefore

γd(T ′) ≤ γd(T )−4. Now we get γd(T ′) ≤ γd(T )−4 = γ2(T )−3 ≤ γ2(T ′). This is

a contradiction as by Lemma 2.4 we have γd(T ′) > γ2(T ′). Therefore every chain

of T has length at most six.

Now assume that some vertex of C(T ), say x, is adjacent to a chain of length

six, say xfedcba. Let T ′ = T−a−b−c and T ′′ = T ′−d. Let D′ be any γ2(T ′)-set.

It is easy to see that D′ ∪ {a, c} is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T ′) + 2.

Now let us observe that there exists a γd(T )-set that does not contain the vertex c.

Let D be such a set. By Observations 2.2 and 2.3 we have a, b ∈ D. Observe that

D \ {a, b} is a DDS of the tree T ′. Therefore γd(T ′) ≤ γd(T ) − 2. Now we get

γd(T ′) ≤ γd(T )−2 = γ2(T )−1 ≤ γ2(T ′)+1. On the other hand, by Lemma 2.4 we

have γd(T ′) ≥ γ2(T ′)+1. This implies that γd(T ′) = γ2(T ′)+1. By the inductive

hypothesis we have T ′ ∈ T . Let D′′ be any γ2(T ′′)-set. By Observation 2.1 we

have e ∈ D′′. It is easy to observe that D′′ ∪ {c, a} is a 2DS of the tree T . Thus

γ2(T ) ≤ γ2(T ′′)+2. Now let us observe that there exists a γd(T )-set that does not

contain the vertices c and f . Let D be such a set. By Observations 2.2 and 2.3 we

have a, b ∈ D. The vertex c has to be dominated twice, thus d ∈ D. Let us observe

that D ∪ {f} \ {d, b, a} is a DDS of the tree T ′′. Therefore γd(T ′′) ≤ γd(T ) − 2.

Now we get γd(T ′′) ≤ γd(T ) − 2 = γ2(T ) − 1 ≤ γ2(T ′′) + 1. This implies that

γd(T ′′) = γ2(T ′′) + 1. By the inductive hypothesis we have T ′′ ∈ T . Observe

that T ′′ /∈ T0 as the tree T ′′ has a chain of length two. Thus T ′′ ∈ T \ T0. This

implies that tree T ′′ can be obtained in a way described in the definition of the

family T . Let T ′′′ = T ′′ − d. Let us observe that the only components which can

form the tree T ′′ are T ′′′ and the one-vertex graph. Thus T ′′′ ∈ T0. Since T ′ ∈ T ,

it follows from the definitions of the families T0 and T that x is a strong support

vertex of T ′′′. The tree T can be obtained from T ′′′ by attaching a path P5 by

joining its any leaf to the leaf f . Thus T ∈ T .

Now assume that some vertex of C(T ), say x, is adjacent to a chain of length

five, say xedcba. Let T ′ = T − a − b − c − d. Let D′ be any γ2(T ′)-set. By

Observation 2.1 we have e ∈ D′. It is easy to observe that D′ ∪ {c, a} is a 2DS of

the tree T . Thus γ2(T ) ≤ γ2(T ′)+2. Now let us observe that there exists a γd(T )-

set that does not contain the vertex c. Let D be such a set. By Observations 2.2

and 2.3 we have a, b ∈ D. The vertex d has to be dominated twice, thus d, e ∈ D.

By Lemma 2.5 we have x ∈ D. It is easy to see that D \ {d, b, a} is a DDS of

the tree T ′. Therefore γd(T ′) ≤ γd(T ) − 3. Now we get γd(T ′) ≤ γd(T ) − 3

= γ2(T )− 2 ≤ γ2(T ′), a contradiction.
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Now assume that some vertex of C(T ), say x, is adjacent to a chain of length

four, say xdcba. Let T ′ = T − a− b and T ′′ = T ′ − c. Let D′ be any γ2(T ′)-set.

By Observation 2.1 we have c ∈ D′. It is easy to see that D′∪{a} is a 2DS of the

tree T . Thus γ2(T ) ≤ γ2(T ′)+1. Now let us observe that there exists a γd(T )-set

that does not contain the vertex c. Let D be such a set. By Observations 2.2

and 2.3 we have a, b ∈ D. Let us observe that D ∪ {c} \ {a, b} is a DDS of

the tree T ′. Therefore γd(T ′) ≤ γd(T ) − 2. Now we get γd(T ′) ≤ γd(T ) − 2

= γ2(T )−1 ≤ γ2(T ′)+1. This implies that γd(T ′) = γ2(T ′)+1. By the inductive

hypothesis we have T ′ ∈ T . Observe that T ′ /∈ T0 as the tree T ′ has a chain of

length two. Thus T ′ ∈ T \ T0. This implies that the tree T ′ can be obtained in

a way described in the definition of the family T . Let us observe that the only

components which can form the tree T ′ are T ′′ and the one-vertex graph. Thus

T ′′ ∈ T0. The tree T can be obtained from T ′′ by attaching a path P3 by joining

its any leaf to the leaf d. Thus T ∈ T .

Now assume that every chain of T has length at most three. First assume

that the set C(T ) contains exactly one vertex, say x. Thus the tree T can be

obtained from a star by subdividing each one of its edges at most twice. Assume

that x is adjacent to at least two chains of length two. Let xba and xdc mean

chains adjacent to x. Let T ′ = T − a − b. Let us observe that there exists

a γ2(T ′)-set that contains the vertex x. Let D′ be such a set. It is easy to see

that D′ ∪{a} is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T ′) + 1. Now let D be any

γd(T )-set. By Observations 2.2 and 2.3 we have a, b, d ∈ D. By Lemma 2.5 we

have x ∈ D. It is easy to see that D \ {a, b} is a DDS of the tree T ′. Therefore

γd(T ′) ≤ γd(T ) − 2. Now we get γd(T ′) ≤ γd(T ) − 2 = γ2(T ) − 1 ≤ γ2(T ′),

a contradiction. Therefore x is adjacent to at most one chain of length two. If

x is adjacent to a chain of length one or two, then from the definitions of the

families T0 and T it follows that T ∈ T . Now assume that x is not adjacent to

any chain of length one or two. Thus every chain adjacent to x has length three.

We have γd(T ) = n − dT (x) + 1 = n − dT (x) − 1 + 2 = γ2(T ) + 2 > γ2(T ) + 1,

a contradiction.

Now assume that the set C(T ) has at least two elements. Let x mean a vertex

of C(T ) adjacent to exactly one link. Thus x is adjacent to at least two chains.

First assume that x is adjacent to a chain of length three, say xcba. Assume that

dT (x) ≥ 4. Let T ′ = T − a − b − c. Let D′ be any γ2(T ′)-set. It is easy to

see that D′ ∪ {a, c} is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T ′) + 2. Now let

us observe that there exists a γd(T )-set that does not contain the vertex c. Let

D be such a set. By Observations 2.2 and 2.3 we have a, b ∈ D. Observe that

D \ {a, b} is a DDS of the tree T ′. Therefore γd(T ′) ≤ γd(T ) − 2. Now we get
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γd(T ′) ≤ γd(T )−2 = γ2(T )−1 ≤ γ2(T ′)+1. This implies that γd(T ′) = γ2(T ′)+1.

By the inductive hypothesis we have T ′ ∈ T . It follows from the definitions of

the families T0 and T that T ∈ T .

Now assume that dT (x) = 3. First assume that the chain adjacent to x and

different from xcba has length three. Let xfed mean this chain. The neighbor

of x other than c and f we denote by y. First assume that dT (y) ≥ 3. Let

T ′ = T − a − b. Let D′ be any γ2(T ′)-set. By Observation 2.1 we have c ∈ D′.

It is easy to see that D′ ∪ {a} is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T ′) + 1.

Now let D be any γd(T )-set. By Observations 2.2 and 2.3 we have a, b ∈ D. By

Lemma 2.5 we have x, y ∈ D. The set D is minimal, thus c /∈ D. Observe that

D \ {a, b} is a DDS of the tree T ′. Therefore γd(T ′) ≤ γd(T ) − 1. Now we get

γd(T ′) ≤ γd(T )− 1 = γ2(T ) ≤ γ2(T ′) + 1. This implies that γd(T ′) = γ2(T ′) + 1.

By the inductive hypothesis we have T ′ ∈ T . This is a contradiction as no tree

of the family T has a link of length one.

Now assume that dT (y) = 2. The neighbor of y other than x we denote

by z. First assume that dT (z) ≥ 3. Let T ′ = T − a − b − c − d − e − f − x.

Let D′ be any γ2(T ′)-set. It is easy to observe that D′ ∪ {a, c, d, f} is a 2DS

of the tree T . Thus γ2(T ) ≤ γ2(T ′) + 4. Now let us observe that there exists

a γd(T )-set that does not contain the vertices c and f . Let D be such a set. By

Observations 2.2 and 2.3 we have a, b, d, e ∈ D. By Lemma 2.5 we have x, z ∈ D.

The vertex x has to be dominated twice, thus y ∈ D. It is easy to see that

D \ {a, b, d, e, x} is a DDS of the tree T ′. Therefore γd(T ′) ≤ γd(T )− 5. Now we

get γd(T ′) ≤ γd(T )− 5 = γ2(T )− 4 ≤ γ2(T ′), a contradiction.

Now assume that dT (z) = 2. The neighbor of z other than y we denote by k.

First assume that dT (k) ≥ 3. Let T ′ = T − a − b and T ′′ = T ′ − c − d − e − f .

By Tx (Tk, respectively) we denote the component of T − yz which contains the

vertex x (k, respectively). Let T ′
x mean the component of T ′− yz which contains

the vertex x. Similarly as earlier we conclude that γd(T ′) = γ2(T ′) + 1. By the

inductive hypothesis we have T ′ ∈ T . Observe that T ′ /∈ T0 as the tree T ′ has

a link of length three. Thus T ′ ∈ T \ T0. This implies that the tree T ′ can be

obtained in a way described in the definition of the family T . Let us observe

the only components which can form the tree T ′ are T ′
x and Tk. Thus Tk ∈ T0.

Let D′′ be any γ2(T ′′)-set. It is easy to observe that D′′ ∪ {a, c, d, f} is a 2DS

of the tree T . Thus γ2(T ) ≤ γ2(T ′′) + 4. Now let us observe that there exists

a γd(T )-set that does not contain the vertices c and f . Let D be such a set.

By Observations 2.2 and 2.3 we have a, b, d, e ∈ D. Observe that D \ {a, b, d, e}
is a DDS of the tree T ′′. Therefore γd(T ′′) ≤ γd(T ) − 4. Now we get γd(T ′′)

≤ γd(T ) − 4 = γ2(T ) − 3 ≤ γ2(T ′′) + 1. This implies that γd(T ′′) = γ2(T ′′) + 1.
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By the inductive hypothesis we have T ′′ ∈ T . Since T ′ ∈ T0, it follows from the

definitions of the families T0 and T that T ′′ ∈ T0. Thus k is adjacent to a leaf in

T ′′, and consequently, the vertex k is a strong support vertex of Tk. The tree T

can be obtained from the trees Tx and Tk by joining the leaves y and z. Thus

T ∈ T .

Now assume that dT (k) = 2. Let T ′ = T−a−b−c−d−e−f−x−y−z. Let D′

be any γ2(T ′)-set. By Observation 2.1 we have k ∈ D′. It is easy to observe that

D′ ∪ {y, a, c, d, f} is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T ′) + 5. Now let us

observe that there exists a γd(T )-set that does not contain the vertices c, f , and z.

Let D be such a set. By Observations 2.2 and 2.3 we have a, b, d, e ∈ D. The

vertex x has to be dominated twice, thus x, y ∈ D. Observe thatD\{a, b, d, e, x, y}
is a DDS of the tree T ′. Therefore γd(T ′) ≤ γd(T ) − 6. Now we get γd(T ′)

≤ γd(T )− 6 = γ2(T )− 5 ≤ γ2(T ′), a contradiction.

Now assume that the chain adjacent to x and different from xcba has length

two. Let xed mean this link. The neighbor of x other than c and e we denote

by y. Let T ′ = T−a−b. Similarly as earlier we conclude that γd(T ′) = γ2(T ′)+1.

By the inductive hypothesis we have T ′ ∈ T . Observe that T ′ /∈ T0 as the tree T ′

has a chain of length two. Thus T ′ ∈ T \ T0. This implies that the tree T ′ can be

obtained in a way described in the definition of the family T . Let us observe that

the only components which can form the tree T ′ are T ′ − d and the one-vertex

graph. Thus T ′ − d ∈ T0. Let T ′′ = T − d. It follows from the definition of

the family T0 that T ′′ ∈ T0. The tree T can be obtained from T ′′ by attaching

a vertex by joining it to the leaf c. Thus T ∈ T .

Now assume that the chain adjacent to x and different from xcba has length

one. Let T ′ = T −a−b. Similarly as earlier we conclude that γd(T ′) = γ2(T ′)+1.

By the inductive hypothesis we have T ′ ∈ T . It follows from the definitions of

the families T0 and T that T ∈ T .

Now assume that every chain adjacent to x has length at most two. First

assume that x is adjacent to a chain of length two, say xba. Assume that x

is also adjacent to another chain of length two, say xdc. Let T ′ = T − a − b.
Let us observe that there exists a γ2(T ′)-set that contains the vertex x. Let D′

be such a set. It is easy to see that D′ ∪ {a} is a 2DS of the tree T . Thus

γ2(T ) ≤ γ2(T ′) + 1. Now let D be any γd(T )-set. By Observations 2.2 and 2.3

we have a, b, d ∈ D. By Lemma 2.5 we have x ∈ D. It is easy to see that

D \ {a, b} is a DDS of the tree T ′. Therefore γd(T ′) ≤ γd(T ) − 2. Now we get

γd(T ′) ≤ γd(T )− 2 = γ2(T )− 1 ≤ γ2(T ′), a contradiction.

Thus every chain adjacent to x and different from xba has length one. Let

xc mean a chain adjacent to x. First assume that dT (x) ≥ 4. Let T ′ = T − c.
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Let D′ be any γ2(T ′)-set. Of course, D′ ∪ {c} is a 2DS of the tree T . Thus

γ2(T ) ≤ γ2(T ′) + 1. Now let D be any γd(T )-set. By Observations 2.2 and 2.3

we have b, c ∈ D. By Lemma 2.5 we have x ∈ D. It is easy to see that D \ {c}
is a DDS of the tree T ′. Therefore γd(T ′) ≤ γd(T ) − 1. Now we get γd(T ′)

≤ γd(T ) − 1 = γ2(T ) ≤ γ2(T ′) + 1. This implies that γd(T ′) = γ2(T ′) + 1. By

the inductive hypothesis we have T ′ ∈ T . It follows from the definitions of the

families T0 and T that T ∈ T .

Now assume that dT (x) = 3. The neighbor of x other than b and c we denote

by y. First assume that dT (y) ≥ 3. Let T ′ = T − a. Let D′ be any γ2(T ′)-set. Of

course, D′ ∪ {a} is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T ′) + 1. Now let D be

any γd(T )-set. By Observations 2.2 and 2.3 we have a, b, x ∈ D. It is easy to see

that D \ {a} is a DDS of the tree T ′. Therefore γd(T ′) ≤ γd(T )− 1. Now we get

γd(T ′) ≤ γd(T )− 1 = γ2(T ) ≤ γ2(T ′) + 1. This implies that γd(T ′) = γ2(T ′) + 1.

By the inductive hypothesis we have T ′ ∈ T . This is a contradiction as no tree

of the family T has a link of length one.

Now assume that dT (y) = 2. The neighbor of y other than x we denote by z.

First assume that dT (z) ≥ 3. Let T ′ be a tree obtained from T − a − b − c

by attaching a vertex, say t, by joining it to the vertex z. Let us observe that

there exists a γ2(T ′)-set that contains the vertex z. Let D′ be such a set. By

Observation 2.1 we have x, t ∈ D′. It is easy to observe that D′ \ {t} ∪ {a, c} is

a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T ′) + 1. Now let us observe that there

exists a γd(T )-set that does not contain the vertex y. Let D be such a set. By

Observations 2.2 and 2.3 we have a, b, c, x ∈ D. By Lemma 2.5 we have z ∈ D.

It is easy to observe that D ∪ {t, y} \ {a, b, c} is a DDS of the tree T ′. Therefore

γd(T ′) ≤ γd(T )− 1. Now we get γd(T ′) ≤ γd(T )− 1 = γ2(T ) ≤ γ2(T ′) + 1. This

implies that γd(T ′) = γ2(T ′) + 1. By the inductive hypothesis we have T ′ ∈ T .

Observe that T ′ /∈ T0 as the tree T ′ has a chain of length two. Thus T ′ ∈ T \ T0.

This implies that the tree T ′ can be obtained in a way described in the definition

of the family T . Let us observe that the only components which can form the

tree T ′ are T ′ − x and the one-vertex graph. Thus T ′ − x ∈ T0. Let T ′′ = T − a.

It follows from the definition of the family T0 that T ′′ ∈ T0. The tree T can be

obtained from T ′′ by attaching a vertex by joining it to the leaf b. Thus T ∈ T .

Now assume that dT (z) = 2. Let T ′ = T − a − b − c − x − y. Let D′ be

any γ2(T ′)-set. By Observation 2.1 we have z ∈ D′. It is easy to observe that

D′ ∪ {a, x, c} is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T ′) + 3. Now let us

observe that there exists a γd(T )-set that does not contain the vertex y. Let D

be such a set. By Observations 2.2 and 2.3 we have a, b, c, x ∈ D. Observe that
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D \ {a, b, c, x} is a DDS of the tree T ′. Therefore γd(T ′) ≤ γd(T ) − 4. Now we

get γd(T ′) ≤ γd(T )− 4 = γ2(T )− 3 ≤ γ2(T ′), a contradiction.

Now assume that every chain adjacent to x has length one. Let xa and xb

mean chains adjacent to x. First assume that dT (x) ≥ 4. Let T ′ = T − a.

Let D′ be any γ2(T ′)-set. Of course, D′ ∪ {a} is a 2DS of the tree T . Thus

γ2(T ) ≤ γ2(T ′) + 1. Now let D be any γd(T )-set. By Observations 2.2 and 2.3 we

have a, b, x ∈ D. It is easy to see that D \ {a} is a DDS of the tree T ′. Therefore

γd(T ′) ≤ γd(T )− 1. Now we get γd(T ′) ≤ γd(T )− 1 = γ2(T ) ≤ γ2(T ′) + 1. This

implies that γd(T ′) = γ2(T ′) + 1. By the inductive hypothesis we have T ′ ∈ T .

It follows from the definitions of the families T0 and T that T ∈ T .

Now assume that dT (x) = 3. The neighbor of x other than a and b we denote

by y. First assume that dT (y) ≥ 3. Let u mean a vertex of C(T ) other than x

and adjacent to exactly one link. It suffices to consider only the possibility when

dT (u) = 3 and both chains adjacent to u have length one. First assume that

u 6= y. Let ut mean a chain adjacent to u. Let T ′ = T − t. Similarly as earlier we

conclude that γd(T ′) = γ2(T ′) + 1. By the inductive hypothesis we have T ′ ∈ T .

This is a contradiction as no tree of the family T has a link of length one. Thus

u = y. This implies that T is a double star with both support vertices of degree

three. We have γd(T ) = 6 = 4 + 2 = γ2(T ) + 2 > γ2(T ) + 1, a contradiction.

Now assume that dT (y) = 2. The neighbor of y other than x we denote by z.

First assume that dT (z) ≥ 3. Let T ′ = T − a. Similarly as earlier we conclude

that γd(T ′) = γ2(T ′) + 1. By the inductive hypothesis we have T ′ ∈ T . It follows

from the definitions of the families T0 and T that T ∈ T .

Now assume that dT (z) = 2. The neighbor of z other than y we denote by k.

First assume that dT (k) ≥ 3. Let T ′ = T − a and T ′′ = T ′ − b− x− y. Similarly

as earlier we conclude that T ′ ∈ T . Observe that T ′ /∈ T0 as the tree T ′ has

a chain of length four. Thus T ′ ∈ T \ T0. This implies that the tree T ′ can be

obtained in a way described in the definition of the family T . Let us observe that

the only components which can form the tree T ′ are T ′′ and P3. Thus T ′′ ∈ T0.

It is easy to see that K1,3 ∈ T0. The tree T can be obtained from T ′′ by attaching

a star K1,3 by joining its any leaf to the leaf z. Thus T ∈ T .

Now assume that dT (k) = 2. The neighbor of k other than z we denote by l.

First assume that dT (l) ≥ 3. Let T ′ = T −a−b−x−y−z. Let D′ be any γ2(T ′)-

set. By Observation 2.1 we have k ∈ D′. It is easy to observe that D′ ∪ {y, a, b}
is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T ′) + 3. Now let us observe that there

exists a γd(T )-set that does not contain the vertex y. Let D be such a set. By

Observations 2.2 and 2.3 we have a, b, x ∈ D. The vertex z has to be dominated

twice, thus z, k ∈ D. By Lemma 2.5 we have l ∈ D. It is easy to see that
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D \ {a, b, x, z} is a DDS of the tree T ′. Therefore γd(T ′) ≤ γd(T ) − 4. Now we

get γd(T ′) ≤ γd(T )− 4 = γ2(T )− 3 ≤ γ2(T ′), a contradiction.

Now assume that dT (l) = 2. The neighbor of l other than k we denote by m.

First assume that dT (m) ≥ 3. Let T ′ = T − a. Similarly as earlier we conclude

that γd(T ′) = γ2(T ′) + 1. By the inductive hypothesis we have T ′ ∈ T . Observe

that T ′ /∈ T0 as the tree T ′ has a chain of length six. Thus T ′ ∈ T \ T0. This

implies that the tree T ′ can be obtained in a way described in the definition of

the family T . Let T ′′ = T ′ − b − x − y and T ′′′ = T ′′ − z − k. Let us observe

that the only two possibilities of the components which can form the tree T ′ are

T ′′ with P3 and T ′′′ with P5. If T is obtained from T ′′ by attaching a path P3

by joining its any leaf to the leaf z, then T ′′ ∈ T0. Thus m is adjacent to a leaf

in T ′′. It follows from the definitions of the families T0 and T that T ′′′ ∈ T0.

Moreover, the vertex m is a strong support vertex of the tree T ′′′. Now assume

that T is obtained from T ′′′ by attaching a path P5 by joining its any leaf to the

leaf l. Thus T ′′′ ∈ T0. Moreover, the vertex m is a strong support vertex. Let

Tx = T −T ′′′. The tree T can be obtained from T ′′′ and Tx by joining the leaves k

and l. Thus T ∈ T .

Now assume that dT (m) = 2. Let T ′ = T − a − b − x − y − z − k − l. Let

D′ be any γ2(T ′)-set. By Observation 2.1 we have m ∈ D′. It is easy to observe

that D′ ∪ {k, y, a, b} is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T ′) + 4. Now let us

observe that there exists a γd(T )-set that does not contain the vertices y and l.

Let D be such a set. By Observations 2.2 and 2.3 we have a, b, x ∈ D. The

vertex z has to be dominated twice, thus z, k ∈ D. Observe that D \ {a, b, x, z, k}
is a DDS of the tree T ′. Therefore γd(T ′) ≤ γd(T ) − 5. Now we get γd(T ′)

≤ γd(T )− 5 = γ2(T )− 4 ≤ γ2(T ′), a contradiction. �

As an immediate consequence of Lemmas 2.7 and 2.8, we have the follow-

ing characterization of the trees with double domination number equal to 2-

domination number plus one.

Theorem 2.9. Let T be a tree. Then γd(T ) = γ2(T ) + 1 if and only if T ∈ T .
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