ON TREES WITH DOUBLE DOMINATION NUMBER EQUAL
TO 2-DOMINATION NUMBER PLUS ONE

MARCIN KRZYWKOWSKI

ABSTRACT. A vertex of a graph is said to dominate itself and all of its
neighbors. A subset D C V(@) is a 2-dominating set of G if every vertex
of V(G) \ D is dominated by at least two vertices of D, while it is a double
dominating set of G if every vertex of G is dominated by at least two ver-
tices of D. The 2-domination (double domination, respectively) number of
a graph G is the minimum cardinality of a 2-dominating (double dominating,
respectively) set of G. We characterize all trees with the double domination
number equal to the 2-domination number plus one.

1. INTRODUCTION

Let G = (V, E) be a graph. By the neighborhood of a vertex v of G we mean
the set Ng(v) = {u € V(G): wv € E(G)}. The degree of a vertex v, denoted by
dg(v), is the cardinality of its neighborhood. By a leaf we mean a vertex of degree
one, while a support vertex is a vertex adjacent to a leaf. We say that a support
vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly
one leaf, respectively). We say that a subset of V(&) is independent if there is no
edge between every two its vertices. The path on n vertices we denote by P,. Let
T be a tree, and let v be a vertex of T. We say that v is adjacent to a path P, if
there is a neighbor of v, say x, such that the subtree resulting from 7" by removing
the edge vx and which contains the vertex z, is a path P,. By a star we mean
a connected graph in which exactly one vertex has degree greater than one. By
a double star we mean a graph obtained from a star by joining a positive number
of vertices to one of its leaves. Let uv be an edge of a graph G. By subdividing
the edge uv we mean removing it, and adding a new vertex, say z, along with
two new edges, ur and vz. By a subdivided star we mean a graph obtained from
a star by subdividing each one of its edges.
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A subset D C V(G) is a dominating set of G if every vertex of V(G) \ D
has a neighbor in D, while it is a 2-dominating set, abbreviated 2DS, of G if
every vertex of V(G) \ D has at least two neighbors in D. The domination (2-
domination, respectively) number of G, denoted by v(G) (v2(G), respectively), is
the minimum cardinality of a dominating (2-dominating, respectively) set of G.
A 2-dominating set of G of minimum cardinality is called a 2(G)-set. Note that
2-domination is a type of multiple domination in which each vertex, which is not
in the dominating set, is dominated at least k times for a fixed positive integer k.
Multiple domination was introduced by Fink and Jacobson [5], and further studied
for example in [3, 6, 11, 12]. For a comprehensive survey of domination in graphs,
see [9, 10].

A vertex of a graph is said to dominate itself and all of its neighbors. A subset
D C V(G) is a double dominating set, abbreviated DDS, of G if every vertex of
G is dominated by at least two vertices of D. The double domination number
of G, denoted by v4(G), is the minimum cardinality of a double dominating set
of G. A double dominating set of G of minimum cardinality is called a v4(G)-
set. Double domination in graphs was introduced by Harary and Haynes [8], and
further studied for example in [1, 4, 7].

It is not difficult to observe that every double dominating set of a graph G is
a 2-dominating set of this graph. Thus v4(G) > 72(G), for every graph G.

A paired dominating set of a graph is a dominating set of vertices whose induced
subgraph has a perfect matching. The authors of [2] characterized all trees with
equal double domination and paired domination numbers.

We characterize all trees with the double domination number equal to the
2-domination number plus one.

2. RESULTS

Since the one-vertex graph does not have double dominating set, in this paper,
by a tree we mean only a connected graph with no cycle, and which has at least
two vertices.

We begin with the following three straightforward observations.

Observation 2.1. Every leaf of a graph G is in every v2(G)-set.
Observation 2.2. FEvery leaf of a graph G is in every vq4(G)-set.

Observation 2.3. FEvery support vertex of a graph G is in every v4(G)-set.
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It is easy to see that v4(P2) = 12(P) = 2. Now we prove that for every tree
different than P», the double domination number is greater than the 2-domination
number.

Lemma 2.4. For every tree T # P> we have vq(T) > ~2(T).

PROOF. Since T # P, we have diam(T) > 2. If diam(7T) = 2, then T is
a star Kq,,. We have v(T) = m+1 > m = 7»(T). Now let us assume that
diam(7) = 3. Thus T is a double star. Let n mean the order of the tree T. We
have v4(T) =n>n—12> v (T).

Now assume that diam(T") > 4. Thus the order of the tree T is an integer
n > 5. The result we obtain by the induction on the number n. Assume that the
lemma is true for every tree 7" of order n’ < n.

First assume that some support vertex of T, say x, is strong. Let y and z
be leaves adjacent to x. Let T/ = T — y. Let D’ be any ~(T")-set. Of course,
D" U {y} is a 2DS of the tree T. Thus 72(T) < 72(T”) + 1. Now let D be any
~v4(T)-set. By Observations 2.2 and 2.3 we have y,z,xz € D. It is easy to see
that D\ {y} is a DDS of the tree T". Therefore v4(T") < v4(T) — 1. Now we get
Ya(T) > 7a(T") + 1 > v (T") + 1 > 42(T). Henceforth, we can assume that every
support vertex of T' is weak.

We now root T' at a vertex r of maximum eccentricity diam(7T’). Let ¢ be a leaf
at maximum distance from r, v be the parent of ¢, u be the parent of v, and w
be the parent of u in the rooted tree. By T, let us denote the subtree induced by
a vertex x and its descendants in the rooted tree T

First assume that « is adjacent to a leaf, say x. Let T/ = T —T,. Let D’ be any
~Y2(T")-set. Of course, D' U{v,t} is a 2DS of the tree T. Thus v2(T) < 72 (T") +2.
Now let D be any v,4(T)-set. By Observations 2.2 and 2.3 we have t, z,v,u € D. Tt
is easy to see that D\ {v,t} is a DDS of the tree T”. Therefore v4(T") < v4(T)—2.
Now we get 7a(T) > 7a(T") +2 > 7a(T") +2 > 3(T).

Now assume that among the descendants of u there is a support vertex, say =,
different than v. The leaf adjacent to x we denote by y. Let T/ =T — T,,. Let us
observe that there exists a v2(7”)-set that contains the vertex u. Let D’ be such
a set. It is easy to see that D'U{t} is a 2DS of the tree T'. Thus v2(T) < v2(T")+1.
Now let D be any v4(T)-set. By Observations 2.2 and 2.3 we have t,y,v,z € D.
If u € D, then it is easy to see that D\ {v,t} is a DDS of the tree 7”. Now assume
that u ¢ D. Let us observe that DU{u}\ {v,t} is a DDS of the tree T”. Therefore
Ya(T") < 7a(T) — 1. Now we get va(T) = 7a(T") +1 > 72(T") + 1 = 72(T).

Now assume that dr(u) = 2. Let T/ = T — T,. Let D’ be any ~2(T")-set.
By Observation 2.1 we have v € D’. Tt is easy to see that D’ U {t} is a 2DS
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of the tree T. Thus (T) < ¥2(T") + 1. Now let D be any ~4(T)-set. By
Observations 2.2 and 2.3 we have t,v € D. Let us observe that both vertices u
and w cannot at the same time be outside D as the vertex u has to be dominated
at least twice. If u,w € D, then it is easy to see that D \ {v,t} is a DDS of the
tree T'. If w € D and w ¢ D, then it is easy to observe that D U {w} \ {v,t}
is a DDS of the tree T'. Similarly, if w € D and u ¢ D, then D U {u} \ {v,t}
is a DDS of the tree T’. Now we conclude that v4(7") < v4(T) — 1. We get
Va(T) = va(T") + 1> 72(T") +1 = 7%(T). O

Now we give a necessary condition for that the double domination number of
a tree is equal to its 2-domination number plus one.

Lemma 2.5. If v74(T) = v(T) + 1, then for every v4(T)-set D, every vertex of
V(T)\ D has degree two.

PROOF. Suppose that there exists a v4(T)-set D that does not contain a vertex
of T', say x, which has degree different than two. By Observation 2.2, every leaf
belongs to the set D. Therefore dr(x) > 3. First assume that some neighbor
of x, say y, also does not belong to the set D. By T7 and T» we denote the trees
resulting from 7" by removing the edge xy. Let us observe that each one of those
trees has at least three vertices. We define D1 = DNV(T}) and Dy = DNV (T3).
Let us observe that D; is a DDS of the tree T} and Dy is a DDS of the tree T5.
Let D} be any v2(77)-set and let D5 be any v2(T3)-set. By Lemma 2.4 we have
va(Th) > v2(T1) + 1 and v4(T2) > v2(T2) + 1. Of course, D} U D} is a 2DS of
the tree T. Thus (T) < |D} U D4y|. Now we get v4(T) = |D| = |D; U Dy
= [D1] + |D2| = va(T1) + 7a(T2) = 72(T1) + 1+ 72(T2) + 1 = [Di] + D3| + 2
= |D]UDL| +2 > (T)+2>v(T) + 1, a contradiction.

Now assume that all neighbors of = belong to the set D. First assume that
there is a neighbor of x, say ¥, such that each one of the two trees resulting from
T by removing the edge xy has at least three vertices. We get a contradiction
similarly as when some neighbor of & does not belong to the set D. Now assume
that there is no neighbor of x such that each one of the two trees resulting from
T by removing the edge between them has at least three vertices. This implies
that T is a subdivided star of order at least seven. Let n mean the number of
vertices of the tree T. We have (T) =n—-1= (n+1)/2+ 1+ (n—5)/2
=7(T)+ 14+ (n—>5)/2 > v(T) + 1, a contradiction. O

Let T be a tree. If T is a path, then let C(T') be a one-element set containing
a support vertex of T. If T is not a path, then let C'(T) be a set of vertices of T
which have degree at least three. We say that two vertices of C(T') are linked if
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the path joining them in T is such that all its interior vertices have degree two.
Then the path is called a link. The length of a link is the number of its edges.
Paths joining leaves of T' to vertices of C(T") we call chains. The length of a chain
is the number of its edges.

Let 7o be a family of trees T such that every link has length two, every chain
has length one or three, and each vertex of C'(T) is adjacent to at least one chain
of length one.

Now we prove that for every tree of the family 7y, the double domination
number is equal to the 2-domination number plus one.

Lemma 2.6. If T € Ty, then v4(T) = v2(T) + 1.

PROOF. Let us observe that for any tree T' the following algorithm finds a 2-
dominating set of minimum cardinality. Label vertices of T as taken, omitted,
and undecided. Initialize by calling every vertex undecided. Root T' at any vertex,
say r. Let v # r be a vertex of T, which has not already been decided, and such
that all its children have been decided. If all children of v have been omitted, then
take v. If exactly one child of v has been taken, then omit v and take its parent.
If at least two children of v have been taken, then omit v. When all children of r
are decided, take r if at most one child of r has been taken; otherwise omit r. It
is not very difficult to observe that the taken vertices form a o (T')-set.

By Observations 2.2 and 2.3, every DDS of T contains all leaves and support
vertices. Let us observe that the set of all leaves and support vertices is a DDS
of the tree T. Therefore these vertices form a ~v4(T')-set. Rooting T at the center
vertex of a link, and running the algorithm above we see that a ~2(T")-set contains
all vertices of T excluding support vertices. Let us observe that the number of
non-support vertices of T' is one less than the number of all leaves and support
vertices of T'. Therefore v4(T) = v2(T) + 1. O

We characterize all trees with the double domination number equal to the 2-
domination number plus one. For this purpose we introduce a family T of trees T’
that either belong to the family 7y, or can be obtained from an element of 7y,
say T’, in the following way. Let x mean a leaf of T”. If the neighbor of z is
a strong support vertex or has degree at least three, then we can attach a vertex
by joining it to the leaf z. If the neighbor of = is a strong support vertex, then
we can attach a tree of the family 7y by joining its any leaf to the leaf x.

Now we prove that for every tree of the family 7, the double domination
number is equal to the 2-domination number plus one.

Lemma 2.7. If T €T, then v4(T) = v2(T) + 1.
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PrROOF. If T' € Ty, then by Lemma 2.6 we have v4(T) = v2(T) + 1. Now assume
that T € T\Ty. First assume that T can be obtained from an element of Ty, say T”,
by attaching a vertex, say w, by joining it to a leaf of T”, say x. The neighbor of
x we denote by y. The vertex y is a strong support vertex or has degree at least
three. Let D’ be any v4(T")-set. By Observation 2.2 we have z € D’. It is easy to
see that D’ U{w} is a DDS of the tree T. Thus v4(T) < v4(T') + 1. Rooting T at
the vertex x, and running the earlier algorithm we get a y2(7')-set which contains
the vertex z. Let D be such a set. By Observation 2.1 we have w € D. It is
easy to see that D \ {w} is a 2DS of the tree T'. Therefore y5(T") < v(T) — 1.
Now we get va(T) < va(T") +1 =72 (T") +2 < 42(T) + 1. On the other hand, by
Lemma 2.4 we have v4(T) > v2(T) 4+ 1. This implies that v4(T") = 72(T) + 1.
Now assume that T can be obtained from an element of Ty, say T, by attaching
a tree of the family 7y, say H, by joining its leaf, say w, to a leaf of T”, say =,
adjacent to a strong support vertex, say y. Let z mean a leaf adjacent to y and
different from x. Let D’ be any ~4(T")-set and let Dy be any ~v4(H)-set. By
Observations 2.2 and 2.3 we have z,y,z € D' and w € Dpg. It is easy to observe
that D’ U Dy \ {z} is a DDS of the tree T. Thus v4(T) < va(T") + va(H) — 1.
Rooting T at the vertex z, and running the earlier algorithm we get a ~o(T)-
set that contains the vertices z and w. Let D be such a set. It is easy to see
that DN V(T") is a 2DS of the tree 77 and D N V(H) is a 2DS of the tree H.
Therefore vo(T") + vo(H) < 72(T). Now we get v4(T) < va(T') + va(H) — 1
=72(T")+1+72(H)+1-1="(T") +72(H) +1 < 2(T) + 1. This implies that
Ya(T) =72(T) + 1. O

Now we prove that if the double domination number of a tree is equal to its
2-domination number plus one, then the tree belongs to the family 7.

Lemma 2.8. Let T be a tree. If v4(T) =v2(T) + 1, then T € T.

PROOF. Let n mean the number of vertices of the tree T'. We proceed by induction
on this number. If diam(7) = 1, then T = P. We have v4(T) = 2 = 7(T)
# 72 (T) + 1. If diam(T') = 2, then T is a star. It is easy to see that T € 7o C 7.

Now assume that diam(7") > 3. Thus the order of the tree T is an integer
n > 4. The result we obtain by the induction on the number n. Assume that the
lemma is true for every tree T’ of order n’ < n.

First assume that 7" has a chain of length at least seven, say ending g fedcba,
where a is a leaf. Let T/ =T —a—b—c—d—e— f. Let D’ be any yo(T")-set.
By Observation 2.1 we have g € D’. Tt is easy to observe that D' U {e,c,a} is
a 2DS of the tree T. Thus ¥2(T) < 72(T”) + 3. Now let us observe that there
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exists a v4(7T)-set that does not contain the vertices ¢ and f. Let D be such a set.
By Observations 2.2 and 2.3 we have a,b € D. The vertex d has to be dominated
twice, thus d, e € D. Observe that D\{e, d, b, a} is a DDS of the tree T”. Therefore
Ya(T") < 74(T) — 4. Now we get v4(T") < v4(T) —4 = 2(T) —3 < 2(T"). This is
a contradiction as by Lemma 2.4 we have v4(T") > v2(7"). Therefore every chain
of T has length at most six.

Now assume that some vertex of C(T), say x, is adjacent to a chain of length
six, say x fedcba. Let T = T—a—b—cand T"” = T’ —d. Let D’ be any v2(T")-set.
It is easy to see that D' U {a,c} is a 2DS of the tree T. Thus 72(T') < (") + 2.
Now let us observe that there exists a v4(T')-set that does not contain the vertex c.
Let D be such a set. By Observations 2.2 and 2.3 we have a,b € D. Observe that
D\ {a,b} is a DDS of the tree T'. Therefore v4(T") < v4(T) — 2. Now we get
Ya(T") < 74(T)—2 = y2(T)—1 < %2(T")+1. On the other hand, by Lemma 2.4 we
have v4(T") > v2(T") + 1. This implies that v4(T") = 72(7") + 1. By the inductive
hypothesis we have 77 € T. Let D" be any ~v2(T")-set. By Observation 2.1 we
have e € D”. Tt is easy to observe that D" U {c,a} is a 2DS of the tree T. Thus
Y2 (T) < 42(T")+2. Now let us observe that there exists a v4(7')-set that does not
contain the vertices c and f. Let D be such a set. By Observations 2.2 and 2.3 we
have a,b € D. The vertex c has to be dominated twice, thus d € D. Let us observe
that DU {f} \ {d,b,a} is a DDS of the tree T”. Therefore v4(T") < ~4(T) — 2.
Now we get v4(T") < va(T) — 2 = v2(T) — 1 < 4(T") + 1. This implies that
va(T") = v (T") + 1. By the inductive hypothesis we have T € T. Observe
that T" ¢ Tg as the tree T” has a chain of length two. Thus T € T \ To. This
implies that tree T can be obtained in a way described in the definition of the
family 7. Let T"" = T” — d. Let us observe that the only components which can
form the tree T" are T"" and the one-vertex graph. Thus T’ € Tg. Since T" € T,
it follows from the definitions of the families 7y and 7 that x is a strong support
vertex of T"”’. The tree T can be obtained from T"” by attaching a path Ps by
joining its any leaf to the leaf f. Thus T € T.

Now assume that some vertex of C(T'), say z, is adjacent to a chain of length
five, say wedcba. Let " =T —a —b—c—d. Let D' be any 42(7")-set. By
Observation 2.1 we have e € D'. It is easy to observe that D' U {c, a} is a 2DS of
the tree T. Thus v2(T) < v2(T")+2. Now let us observe that there exists a v4(7T)-
set that does not contain the vertex c. Let D be such a set. By Observations 2.2
and 2.3 we have a,b € D. The vertex d has to be dominated twice, thus d,e € D.
By Lemma 2.5 we have € D. Tt is easy to see that D\ {d,b,a} is a DDS of
the tree T7. Therefore v4(T") < ~v4(T) — 3. Now we get v4(T") < va(T) — 3
=% (T) — 2 < %(T"), a contradiction.
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Now assume that some vertex of C(T'), say z, is adjacent to a chain of length
four, say xdcba. Let T =T —a—band T"” =T’ — c. Let D’ be any v2(T")-set.
By Observation 2.1 we have ¢ € D’. Tt is easy to see that D’ U{a} is a 2DS of the
tree T. Thus v2(T') < v2(T")+ 1. Now let us observe that there exists a v4(7T')-set
that does not contain the vertex c¢. Let D be such a set. By Observations 2.2
and 2.3 we have a,b € D. Let us observe that D U {c} \ {a,b} is a DDS of
the tree T’. Therefore v4(T") < v4(T) — 2. Now we get v4(T") < va(T) — 2
=7 (T)—1 < v (T')+1. This implies that v4(T") = y2(7”) +1. By the inductive
hypothesis we have T” € T. Observe that 77 ¢ Ty as the tree 7' has a chain of
length two. Thus T € T \ To. This implies that the tree T’ can be obtained in
a way described in the definition of the family 7. Let us observe that the only
components which can form the tree 7" are T” and the one-vertex graph. Thus
T" € Ty. The tree T can be obtained from T” by attaching a path P3 by joining
its any leaf to the leaf d. Thus T € T.

Now assume that every chain of T" has length at most three. First assume
that the set C'(T) contains exactly one vertex, say x. Thus the tree T can be
obtained from a star by subdividing each one of its edges at most twice. Assume
that = is adjacent to at least two chains of length two. Let xba and xdc mean
chains adjacent to . Let 77 = T — a — b. Let us observe that there exists
a v2(T")-set that contains the vertex x. Let D’ be such a set. It is easy to see
that D’ U{a} is a 2DS of the tree T. Thus v2(T) < v2(T") +1. Now let D be any
~v4(T')-set. By Observations 2.2 and 2.3 we have a,b,d € D. By Lemma 2.5 we
have z € D. It is easy to see that D \ {a,b} is a DDS of the tree 7”. Therefore
Ya(T") < 7a(T) — 2. Now we get va(T") < 7a(T) — 2 = 7(T) — 1 < (1),
a contradiction. Therefore x is adjacent to at most one chain of length two. If
x is adjacent to a chain of length one or two, then from the definitions of the
families Ty and 7T it follows that T' € 7. Now assume that x is not adjacent to
any chain of length one or two. Thus every chain adjacent to = has length three.
We have v4(T) =n —dr(z)+1=n—dp(z) —14+2=%(T)+2 > wn(T) +1,
a contradiction.

Now assume that the set C(T) has at least two elements. Let 2 mean a vertex
of C(T) adjacent to exactly one link. Thus z is adjacent to at least two chains.
First assume that = is adjacent to a chain of length three, say xcba. Assume that
dr(z) > 4. Let 7" =T —a—b—c. Let D’ be any v(T")-set. It is easy to
see that D’ U {a,c} is a 2DS of the tree T. Thus v2(T) < 72(T") + 2. Now let
us observe that there exists a v4(T)-set that does not contain the vertex c. Let
D be such a set. By Observations 2.2 and 2.3 we have a,b € D. Observe that
D\ {a,b} is a DDS of the tree T'. Therefore v4(T") < v4(T) — 2. Now we get
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Ya(T") < 74(T)=2 = 72(T)—1 < 42 (T")+1. This implies that v4(T") = v2(T")+1.
By the inductive hypothesis we have T" € T. It follows from the definitions of
the families 75 and 7 that T € T.

Now assume that dr(z) = 3. First assume that the chain adjacent to z and
different from zcba has length three. Let zfed mean this chain. The neighbor
of x other than ¢ and f we denote by y. First assume that dr(y) > 3. Let
T =T —a—1b. Let D’ be any ~v2(T")-set. By Observation 2.1 we have ¢ € D’.
It is easy to see that D’ U {a} is a 2DS of the tree T. Thus vy(T) < 2(T") + 1.
Now let D be any v4(T)-set. By Observations 2.2 and 2.3 we have a,b € D. By
Lemma 2.5 we have z,y € D. The set D is minimal, thus ¢ ¢ D. Observe that
D\ {a,b} is a DDS of the tree T'. Therefore v4(T") < v4(T) — 1. Now we get
Ya(T") < 7a(T) = 1 =72(T) < 72(T") + 1. This implies that 74(1") = 72(T") + 1.
By the inductive hypothesis we have T/ € T. This is a contradiction as no tree
of the family 7 has a link of length one.

Now assume that dr(y) = 2. The neighbor of y other than z we denote
by z. First assume that dr(z) > 3. Let 7" =T —-a—-b—c—d—e— f — z.
Let D' be any vo(T")-set. It is easy to observe that D' U {a,c,d, f} is a 2DS
of the tree T. Thus 75(T) < ~2(T") + 4. Now let us observe that there exists
a vq4(T)-set that does not contain the vertices ¢ and f. Let D be such a set. By
Observations 2.2 and 2.3 we have a,b,d,e € D. By Lemma 2.5 we have x,z € D.
The vertex z has to be dominated twice, thus y € D. It is easy to see that
D\ {a,b,d,e,x} is a DDS of the tree T". Therefore v4(T") < v4(T) — 5. Now we
get va(T") < 74(T) — 5 = (1) — 4 < v (T"), a contradiction.

Now assume that dr(z) = 2. The neighbor of z other than y we denote by k.
First assume that dp(k) > 3. Let T/ =T —a—-band 7" =T —c—d—e — f.
By T, (T}, respectively) we denote the component of T' — yz which contains the
vertex x (k, respectively). Let T, mean the component of 7/ — yz which contains
the vertex x. Similarly as earlier we conclude that v4(T") = 42(T”) + 1. By the
inductive hypothesis we have T’ € T. Observe that 7" ¢ 7 as the tree T’ has
a link of length three. Thus 7" € T \ 7p. This implies that the tree T" can be
obtained in a way described in the definition of the family 7. Let us observe
the only components which can form the tree 7" are T, and Tj. Thus T} € 7.
Let D" be any y2(T")-set. It is easy to observe that D" U {a,c,d, f} is a 2DS
of the tree T. Thus (1) < v2(T") + 4. Now let us observe that there exists
a vq(T)-set that does not contain the vertices ¢ and f. Let D be such a set.
By Observations 2.2 and 2.3 we have a,b,d,e € D. Observe that D\ {a,b,d, e}
is a DDS of the tree T"”. Therefore v4(T") < ~v4(T) — 4. Now we get v4(T")
< 4(T) =4 =v2(T) =3 < 42(T") + 1. This implies that v4(T") = v(T") + 1.
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By the inductive hypothesis we have T" € T. Since T € Ty, it follows from the
definitions of the families 7y and 7 that 7" € Ty. Thus k is adjacent to a leaf in
T”, and consequently, the vertex k is a strong support vertex of Ty. The tree T’
can be obtained from the trees T, and T} by joining the leaves y and z. Thus
TeT.

Now assume that dr(k) =2. Let 7' =T—a—-b—c—d—e—f—x—y—=z. Let D’
be any v2(T")-set. By Observation 2.1 we have k € D’. Tt is easy to observe that
D' U{y,a,c,d, f} is a 2DS of the tree T. Thus v2(T) < 1(T’) + 5. Now let us
observe that there exists a v4(T')-set that does not contain the vertices ¢, f, and z.
Let D be such a set. By Observations 2.2 and 2.3 we have a,b,d,e € D. The
vertex x has to be dominated twice, thus z,y € D. Observe that D\{a,b,d, e, x,y}
is a DDS of the tree T'. Therefore v4(T") < v4(T) — 6. Now we get v4(T")
<4a(T) — 6 =y (T) — 5 < v(T"), a contradiction.

Now assume that the chain adjacent to x and different from xzcba has length
two. Let xed mean this link. The neighbor of z other than ¢ and e we denote
by y. Let T" = T'—a—b. Similarly as earlier we conclude that v4(T") = vy2(T") +1.
By the inductive hypothesis we have T’ € T. Observe that 7" ¢ T as the tree T’
has a chain of length two. Thus 77 € T \ 7p. This implies that the tree 7" can be
obtained in a way described in the definition of the family 7. Let us observe that
the only components which can form the tree 77 are T’ — d and the one-vertex
graph. Thus 7" —d € Ty. Let T = T — d. It follows from the definition of
the family 7y that T € Ty. The tree T can be obtained from T” by attaching
a vertex by joining it to the leaf ¢. Thus T' € T.

Now assume that the chain adjacent to x and different from xcba has length
one. Let T/ = T'—a —b. Similarly as earlier we conclude that v4(7") = v2(7") + 1.
By the inductive hypothesis we have T" € T. It follows from the definitions of
the families 7o and 7 that T € T.

Now assume that every chain adjacent to x has length at most two. First
assume that z is adjacent to a chain of length two, say zba. Assume that x
is also adjacent to another chain of length two, say xzdc. Let T/ = T — a — b.
Let us observe that there exists a v2(7")-set that contains the vertex z. Let D’
be such a set. It is easy to see that D’ U {a} is a 2DS of the tree T. Thus
Y2 (T) < 72(T") + 1. Now let D be any 4(T)-set. By Observations 2.2 and 2.3
we have a,b,d € D. By Lemma 2.5 we have x € D. It is easy to see that
D\ {a,b} is a DDS of the tree T". Therefore v4(T") < v4(T) — 2. Now we get
Ya(T) < v4(T) — 2 =7 (T) — 1 < v2(T"), a contradiction.

Thus every chain adjacent to z and different from zba has length one. Let
xzc mean a chain adjacent to x. First assume that dr(z) > 4. Let TV =T — c.
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Let D’ be any 72(T")-set. Of course, D' U {c} is a 2DS of the tree T. Thus
Y2(T) < 72(T") + 1. Now let D be any ~v4(T)-set. By Observations 2.2 and 2.3
we have b,c € D. By Lemma 2.5 we have x € D. It is easy to see that D\ {c}
is a DDS of the tree T'. Therefore v4(T") < 74(T) — 1. Now we get v4(1")
< 4a(T) — 1 = %(T) < 42(T") + 1. This implies that v4(7") = 1=(T') + 1. By
the inductive hypothesis we have T’ € T. It follows from the definitions of the
families 7o and T that T € T.

Now assume that dr(x) = 3. The neighbor of z other than b and ¢ we denote
by y. First assume that dr(y) > 3. Let T/ =T — a. Let D’ be any ~v2(T")-set. Of
course, D' U {a} is a 2DS of the tree T. Thus v2(T) < ¥(T’) + 1. Now let D be
any v4(T)-set. By Observations 2.2 and 2.3 we have a,b, 2 € D. It is easy to see
that D\ {a} is a DDS of the tree T”. Therefore v4(7") < v4(T) — 1. Now we get
Ya(T") <7a(T) =1 =72(T) < 72(T") + 1. This implies that 74(T") = 72(1") + 1.
By the inductive hypothesis we have T/ € T. This is a contradiction as no tree
of the family 7 has a link of length one.

Now assume that dr(y) = 2. The neighbor of y other than z we denote by z.
First assume that dr(z) > 3. Let T” be a tree obtained from T'—a — b — ¢
by attaching a vertex, say t, by joining it to the vertex z. Let us observe that
there exists a ~2(7”)-set that contains the vertex z. Let D’ be such a set. By
Observation 2.1 we have z,t € D’. It is easy to observe that D'\ {t} U {a,c} is
a 2DS of the tree T. Thus (1) < ¥2(T") + 1. Now let us observe that there
exists a v4(7T)-set that does not contain the vertex y. Let D be such a set. By
Observations 2.2 and 2.3 we have a,b,c,z € D. By Lemma 2.5 we have z € D.
It is easy to observe that D U {t,y} \ {a,b, c} is a DDS of the tree T”. Therefore
Ya(T") < 7a(T) — 1. Now we get 7a(T") < 74(T) — 1 = 72(T) < 72(T") + 1. This
implies that v4(T") = 72(T") + 1. By the inductive hypothesis we have T" € T.
Observe that T ¢ Ty as the tree T’ has a chain of length two. Thus 7" € T\ 7.
This implies that the tree T' can be obtained in a way described in the definition
of the family 7. Let us observe that the only components which can form the
tree T” are T — z and the one-vertex graph. Thus T/ —x € Ty. Let T =T — a.
It follows from the definition of the family 7y that T” € Ty. The tree T can be
obtained from T” by attaching a vertex by joining it to the leaf b. Thus T € T.

Now assume that dr(z) = 2. Let " =T —a—b—c—z —y. Let D’ be
any v2(7")-set. By Observation 2.1 we have z € D’. Tt is easy to observe that
D' U {a,z,c} is a 2DS of the tree T. Thus ¥2(T) < ¥2(T’) + 3. Now let us
observe that there exists a v4(T)-set that does not contain the vertex y. Let D
be such a set. By Observations 2.2 and 2.3 we have a,b,c,z € D. Observe that



12 MARCIN KRZYWKOWSKI

D\ {a,b,c,z} is a DDS of the tree T'. Therefore v4(T") < v4(T) — 4. Now we
get Ya(T") < 7a(T) — 4 =72 (T) — 3 < 42(T”), a contradiction.

Now assume that every chain adjacent to x has length one. Let za and xb
mean chains adjacent to x. First assume that dp(z) > 4. Let T/ = T — a.
Let D' be any ~2(T")-set. Of course, D’ U {a} is a 2DS of the tree T. Thus
Y2(T) < v2(T")+ 1. Now let D be any v4(T')-set. By Observations 2.2 and 2.3 we
have a,b,x € D. It is easy to see that D\ {a} is a DDS of the tree 7. Therefore
(T") < 7a(T) — 1. Now we get 7a(T") < 3a(T) — 1 = 3(T) < 72(T") + 1. This
implies that v4(T") = v2(T") + 1. By the inductive hypothesis we have T" € T.
It follows from the definitions of the families 7o and T that T € T.

Now assume that dr(x) = 3. The neighbor of x other than a and b we denote
by y. First assume that dr(y) > 3. Let u mean a vertex of C(T') other than x
and adjacent to exactly one link. It suffices to consider only the possibility when
dr(u) = 3 and both chains adjacent to u have length one. First assume that
u # y. Let ut mean a chain adjacent to u. Let T" = T —t. Similarly as earlier we
conclude that v4(7”) = v2(T") 4+ 1. By the inductive hypothesis we have T” € T.
This is a contradiction as no tree of the family 7 has a link of length one. Thus
u = y. This implies that T is a double star with both support vertices of degree
three. We have v4(T) =6 =4+ 2 = %(T) + 2 > v (T) + 1, a contradiction.

Now assume that dr(y) = 2. The neighbor of y other than z we denote by z.
First assume that dp(z) > 3. Let T = T — a. Similarly as earlier we conclude
that v4(T") = v2(T") + 1. By the inductive hypothesis we have T" € T. It follows
from the definitions of the families 7y and 7 that T € T.

Now assume that dr(z) = 2. The neighbor of z other than y we denote by k.
First assume that dp(k) > 3. Let 7" =T —a and 7" =T' — b — x — y. Similarly
as earlier we conclude that 77 € T. Observe that T/ ¢ Ty as the tree T” has
a chain of length four. Thus 7" € T \ 7p. This implies that the tree T’ can be
obtained in a way described in the definition of the family 7. Let us observe that
the only components which can form the tree 77 are T and P3. Thus T € T.
It is easy to see that K7 3 € 7. The tree T can be obtained from 7" by attaching
a star K 3 by joining its any leaf to the leaf z. Thus T' € 7.

Now assume that dr(k) = 2. The neighbor of k other than z we denote by [.
First assume that dr(l) > 3. Let T/ =T —a—b—x—y—z. Let D’ be any v2(T")-
set. By Observation 2.1 we have k € D’. It is easy to observe that D’ U {y,a,b}
is a 2DS of the tree T. Thus 72(7T") < 72(T”) + 3. Now let us observe that there
exists a vq4(T)-set that does not contain the vertex y. Let D be such a set. By
Observations 2.2 and 2.3 we have a,b,z € D. The vertex z has to be dominated
twice, thus z,k € D. By Lemma 2.5 we have [ € D. It is easy to see that
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D\ {a,b,z,z} is a DDS of the tree T'. Therefore v4(T') < v4(T) — 4. Now we
get Ya(T") < 7a(T) — 4 =72 (T) — 3 < 42(T”), a contradiction.

Now assume that dr(l) = 2. The neighbor of [ other than k we denote by m.
First assume that dp(m) > 3. Let 7" = T — a. Similarly as earlier we conclude
that v4(T") = y2(T”) + 1. By the inductive hypothesis we have 77 € T. Observe
that 77 ¢ To as the tree T' has a chain of length six. Thus 77 € T \ Tp. This
implies that the tree 7' can be obtained in a way described in the definition of
the family 7. Let T/ =T —b—x —y and T = T" — 2 — k. Let us observe
that the only two possibilities of the components which can form the tree 7" are
T" with P3 and T with Ps. If T is obtained from T"” by attaching a path Ps
by joining its any leaf to the leaf z, then T” € 7. Thus m is adjacent to a leaf
in T”. It follows from the definitions of the families 7g and 7 that T € T,.
Moreover, the vertex m is a strong support vertex of the tree T"”. Now assume
that T is obtained from 7" by attaching a path Ps by joining its any leaf to the
leaf [. Thus T"" € Ty. Moreover, the vertex m is a strong support vertex. Let
T, =T—T". The tree T can be obtained from 7"’ and T, by joining the leaves k
and [. Thus T € T.

Now assume that dr(m) =2. Let " =T —-a—-b—az—y—2z—k — 1. Let
D’ be any v2(T")-set. By Observation 2.1 we have m € D’. It is easy to observe
that D' U{k,y,a,b} is a 2DS of the tree T. Thus v2(T) < v2(T") +4. Now let us
observe that there exists a v4(T)-set that does not contain the vertices y and [.
Let D be such a set. By Observations 2.2 and 2.3 we have a,b,x € D. The
vertex z has to be dominated twice, thus z, k € D. Observe that D\ {a,b,z, z, k}
is a DDS of the tree T”. Therefore v4(T") < 74(T) — 5. Now we get v4(1")
<4a(T) =5 =72(T) — 4 < 2(T"), a contradiction. O

As an immediate consequence of Lemmas 2.7 and 2.8, we have the follow-
ing characterization of the trees with double domination number equal to 2-
domination number plus one.

Theorem 2.9. Let T be a tree. Then v4(T) = v2(T) + 1 if and only if T € T.
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