2-bondage in graphs

Marcin Krzywkowski*
e-mail: marcin.krzywkowski@gmail.com

Department of Algorithms and System Modelling
Faculty of Electronics, Telecommunications and Informatics
Gdańsk University of Technology
Narutowićza 11/12, 80–233 Gdańsk, Poland
(Received 00 Month 200x; in final form 00 Month 200x)

A 2-dominating set of a graph \(G = (V, E) \) is a set \(D \) of vertices of \(G \) such that every vertex of \(V(G) \setminus D \) has at least two neighbors in \(D \). The 2-domination number of a graph \(G \), denoted by \(\gamma_2(G) \), is the minimum cardinality of a 2-dominating set of \(G \). The 2-bondage number of \(G \), denoted by \(b_2(G) \), is the minimum cardinality among all sets of edges \(E' \subseteq E \) such that \(\gamma_2(G - E') > \gamma_2(G) \). If for every \(E' \subseteq E \) we have \(\gamma_2(G - E') = \gamma_2(G) \), then we define \(b_2(G) = 0 \), and we say that \(G \) is a \(\gamma_2 \)-strongly stable graph. First we discuss the basic properties of 2-bondage in graphs. We find the 2-bondage numbers for several classes of graphs. Next we show that for every non-negative integer there exists a tree with such 2-bondage number. Finally, we characterize all trees with 2-bondage number equaling one or two.

Keywords: 2-domination; bondage; 2-bondage; tree

AMS Subject Classification: 05C05; 05C69

1. Introduction

Let \(G = (V, E) \) be a graph. By the neighborhood of a vertex \(v \) of \(G \) we mean the set \(N_G(v) = \{ u \in V(G) : uv \in E(G) \} \). The degree of a vertex \(v \), denoted by \(d_G(v) \), is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong if it is adjacent to at least two leaves. The distance between two vertices of a graph is the number of edges in a shortest path connecting them. The eccentricity of a vertex is the greatest distance between it and any other vertex. The diameter of a graph \(G \), denoted by \(\text{diam}(G) \), is the maximum eccentricity among all vertices of \(G \). The path (cycle, respectively) on \(n \) vertices is denoted by \(P_n \) (\(C_n \), respectively). A wheel \(W_n \), where \(n \geq 4 \), is a graph with \(n \) vertices, formed by connecting a vertex to all vertices of the cycle \(C_{n-1} \). By a star we mean a connected graph in which exactly one vertex has degree greater than one. Let \(K_{p,q} \) denote a complete bipartite graph the partite sets of which have cardinalities \(p \) and \(q \).

A subset \(D \subseteq V(G) \) is a dominating set of \(G \) if every vertex of \(V(G) \setminus D \) has a neighbor in \(D \), while it is a 2-dominating set, abbreviated as 2DS, of \(G \) if every vertex of \(V(G) \setminus D \) has at least two neighbors in \(D \). The domination (2-domination, respectively) number of a graph \(G \), denoted by \(\gamma(G) \) (\(\gamma_2(G) \), respectively), is the minimum cardinality of a dominating (2-dominating, respectively) set of \(G \). Note that 2-domination is a type of multiple domination in which each vertex, which is

*Research partially supported by the Polish National Science Centre grant 2011/02/A/ST6/00201.
not in the dominating set, is dominated at least \(k \) times for a fixed positive integer \(k \). Multiple domination was introduced by Fink and Jacobson [3], and further studied for example in [1, 13]. For a comprehensive survey of domination in graphs, see [7, 8].

The bondage number \(b(G) \) of a graph \(G \) is the minimum cardinality among all sets of edges \(E' \subseteq E \) such that \(\gamma(G - E') > \gamma(G) \). If for every \(E' \subseteq E \) we have \(\gamma(G - E') = \gamma(G) \), then we define \(b(G) = 0 \), and we say that \(G \) is a \(\gamma \)-strongly stable graph. Bondage in graphs was introduced in [4], and further studied for example in [2, 5, 6, 9–12, 14].

We define the 2-bondage number of \(G \), denoted by \(b_2(G) \), to be the minimum cardinality among all sets of edges \(E' \subseteq E \) such that \(2(\gamma(G - E')) > 2(\gamma(G)) \). Thus \(b_2(G) \) is the minimum number of edges of \(G \) that have to be removed in order to increase the 2-domination number. If for every \(E' \subseteq E \) we have \(2(\gamma(G - E')) = 2(\gamma(G)) \), then we define \(b_2(G) = 0 \), and we say that \(G \) is a 2-strongly stable graph.

First we discuss the basic properties of 2-bondage in graphs. We find the 2-bondage numbers for several classes of graphs. Next we show that for every non-negative integer there exists a tree with such 2-bondage number. Finally, we characterize all trees with 2-bondage number equaling one or two.

2. Results

We begin with the following observations.

Observation 2 Every leaf of a graph \(G \) is in every \(\gamma_2(G) \)-set.

Observation 3 If \(H \subseteq G \) and \(V(H) = V(G) \), then \(\gamma_2(H) \geq \gamma_2(G) \).

Observation 4 For every positive integer \(n \) we have \(\gamma_2(K_n) = \min \{2, n\} \).

Observation 5 If \(n \) is a positive integer, then \(\gamma_2(P_n) = \lfloor n/2 \rfloor + 1 \).

Observation 6 For every integer \(n \geq 3 \) we have \(\gamma_2(C_n) = \lfloor (n + 1)/2 \rfloor \).

Observation 7 For every integer \(n \geq 4 \) we have

\[
\gamma_2(W_n) = \begin{cases}
2 & \text{if } n = 4, 5; \\
\lfloor (n + 1)/3 \rfloor + 1 & \text{if } n \geq 6.
\end{cases}
\]

Observation 8 Let \(p \) and \(q \) be positive integers such that \(p \leq q \). Then

\[
\gamma_2(K_{p,q}) = \begin{cases}
\max \{q, 2\} & \text{if } p = 1; \\
\min \{p, 4\} & \text{if } p \geq 2.
\end{cases}
\]

First we find the 2-bondage numbers of complete graphs.

Proposition 9 For every positive integer \(n \) we have

\[
b_2(K_n) = \begin{cases}
0 & \text{if } n = 1, 2; \\
\lfloor 2n/3 \rfloor & \text{otherwise}.
\end{cases}
\]

Proof Obviously, \(b_2(K_1) = 0 \) and \(b_2(K_2) = 0 \). Now assume that \(n \geq 3 \). Let \(V(K_n) = \{v_1, v_2, \ldots, v_n\} \). Observe that the 2-domination number of a graph equals two if and only if there is a pair of vertices, which are both adjacent to all vertices other than themselves. Let \(E' \subseteq E(K_n) \). Let us observe \(\gamma_2(K_n - E') > 2 \) if and only if at most one vertex of \(K_n \) is not incident to any edge of \(E' \), and
every edge of E' is adjacent to some other edge of E'. We want to choose a smallest set $E' \subseteq E(K_n)$ satisfying the above condition. Let us observe that the most efficient way is to choose for example the edges $v_1v_2, v_2v_3, v_4v_5, v_5v_6$, and so on. Let k be a positive integer. If $n = 3k$, then we have to remove $2k$ edges. Thus $b_2(K_{3k}) = 2k = 2n/3 = [2n/3]$. If $n = 3k + 1$, then we also remove $2k$ edges as one vertex can remain universal. We have $b_2(K_{3k+1}) = 2k = [2k + 2]/3 = [2(3k + 1)/3] = [2n/3]$. Now assume that $n = 3k + 2$. If we remove the edges $v_1v_2, v_2v_3, v_4v_5, v_5v_6, \ldots, v_{3k-2}v_{3k-1}, v_{3k-1}v_{3k}$, then the vertices v_{3k+1} and v_{3k+2} remain universal. Therefore $b_2(K_{3k+2}) > 2k$. Let us observe that removing also the edge $v_{3k}v_{3k+1}$ suffices to increase the 2-domination number. This implies that $b_2(K_{3k+2}) = 2k + 1 = [2k + 4/3] = [2(3k + 2)/3] = [2n/3]$.

Now we calculate the 2-bondage numbers of paths.

Proposition 10 If n is a positive integer, then

$$b_2(P_n) = \begin{cases}
0 & \text{for } n = 1, 2; \\
1 & \text{for } n \geq 3.
\end{cases}$$

Now we investigate the 2-bondage in cycles.

Proposition 11 For every integer $n \geq 3$ we have

$$b_2(C_n) = \begin{cases}
1 & \text{if } n \text{ is even;} \\
2 & \text{if } n \text{ is odd.}
\end{cases}$$

Now we calculate the 2-bondage numbers of wheels.

Proposition 12 For every integer $n \geq 4$ we have

$$b_2(W_n) = \begin{cases}
1 & \text{if } n = 5; \\
2 & \text{if } n \neq 3k + 2; \\
3 & \text{otherwise.}
\end{cases}$$

Proof Let $E(W_n) = \{v_1v_2, v_1v_3, \ldots, v_1v_n, v_2v_3, v_3v_4, \ldots, v_{n-1}v_n, v_nv_2\}$. Using Proposition 9 we get $b_2(W_3) = b_2(K_3) = 2$. By Observation 7 we have $\gamma_2(W_5) = 2$. We also have $\gamma_2(W_5 - v_2v_3) = 3 > 2 = \gamma_2(W_5)$. Thus $b_2(W_5) = 1$. Now assume that $n \geq 6$. If we remove an edge incident to v_1, say v_1v_2, then we get $\gamma_2(W_n - v_1v_2) = \gamma_2(W_n)$ as we can construct a $\gamma_2(W_n)$-set that contains the vertices v_1 and v_2; such set is also a 2DS of the graph $W_n - v_1v_2$. If we remove an edge non-incident to v_1, say v_2v_3, then we get $\gamma_2(W_n - v_2v_3) = \gamma_2(W_n)$ as we can construct a $\gamma_2(W_n)$-set that does not contain the vertices v_2 and v_3; such set is also a 2DS of the graph $W_n - v_2v_3$. This implies that $b_2(W_n) \neq 1$. First assume that $n = 3k$ or $n = 3k + 1$. Let us remove two edges non-incident to v_1 and incident to the same vertex v_i (for some $i \neq 1$). For example, we remove the edges $v_{n-1}v_n$ and v_nv_2. Now we find a relation between the numbers $\gamma_2(W_n - v_{n-1}v_n - v_nv_2)$ and $\gamma_2(W_n - v_n)$. Let D be any $\gamma_2(W_n - v_{n-1}v_n - v_nv_2)$-set. By Observation 2 we have $v_n \in D$. Let us observe that $D \setminus \{v_n\}$ is a 2DS of the graph $W_n - v_n$. Thus $\gamma_2(W_n - v_n) \leq \gamma_2(W_n - v_{n-1}v_n - v_nv_2) - 1$. Observe that $W_n - v_n$ is a subgraph of W_{n-1} having the same set of vertices, as $W_{n-1} - v_{n-1}v_2 = W_n - v_n$. Using Observations 3 and 7 we get $\gamma_2(W_n - v_{n-1}v_n - v_nv_2) \geq \gamma_2(W_n - v_n) + 1 \geq \gamma_2(W_{n-1}) + 1 = \lceil n/3 \rceil + 2 = \lceil (n + 1)/3 \rceil + 2 = \gamma_2(W_n) + 1 > \gamma_2(W_n)$. Therefore $b_2(W_n) = 2$ if $n = 3k$ or $n = 3k + 1$. Now assume that $n = 3k + 2$. It is not very difficult to verify that now removing any two edges does not increase the 2-domination number. This implies that $b_2(W_n) \neq 1, 2$. Let us re-
move three edges non-incident to v_1, and forming a path P_4. For example, we remove the edges $v_{n-2}v_{n-1}$, $v_{n-1}v_n$, and v_nv_2. Now we find a relation between the numbers $\gamma_2(W_n - v_{n-2}v_{n-1} - v_{n-1}v_n - v_nv_2)$ and $\gamma_2(W_n - v_{n-1} - v_n)$. Let D be any $\gamma_2(W_n - v_{n-2}v_{n-1} - v_{n-1}v_n - v_nv_2)-$set. By Observation 2 we have $v_{n-1}, v_n \in D$. Let us observe that $D \setminus \{v_{n-1}, v_n\}$ is a 2DS of the graph $W_n - v_{n-1} - v_n$. Thus $\gamma_2(W_n - v_{n-1} - v_n) \leq \gamma_2(W_n - v_{n-2}v_{n-1} - v_{n-1}v_n - v_nv_2) - 2$. Observe that $W_n - v_{n-1} - v_n$ is a subgraph of W_{n-2} having the same set of vertices, as $W_{n-2} - v_{n-2}v_{n-1} = W_n - v_{n-1} - v_n$. Using Observations 3 and 7 we get $\gamma_2(W_n - v_{n-2}v_{n-1} - v_{n-1}v_n - v_nv_2) \geq \gamma_2(W_n - v_{n-1} - v_n) + 2 \geq \gamma_2(W_{n-2}) + 2 = \left\lfloor \frac{(n - 1)}{3} \right\rfloor + 3 = \left\lfloor \frac{(3k + 1)}{3} \right\rfloor + 3 = \left\lfloor \frac{(3k + 3)}{3} \right\rfloor + 2 = \left\lfloor \frac{(n + 1)}{3} \right\rfloor + 2 = \gamma_2(W_n) + 1 > \gamma_2(W_n)$. Therefore $b_2(W_n) = 3$ if $n = 3k + 2$.

Now we investigate the 2-bondage in complete bipartite graphs.

Proposition 13 Let p and q be positive integers such that $p \leq q$. Then

$$b_2(K_{p,q}) = \begin{cases} q - 1 & \text{if } p = 1; \\ 3 & \text{if } p = q = 3; \\ 5 & \text{if } p = q = 4; \\ p - 1 & \text{otherwise.} \end{cases}$$

Proof Let $E(K_{p,q}) = \{a_ib_j : 1 \leq i \leq p \text{ and } 1 \leq j \leq q\}$. If $p = 1$, then $K_{p,q}$ is a star. We have $b_2(K_{1,1}) = 0 = q - 1$. If $q \geq 2$, then it is not difficult to verify that in order to increase the 2-domination number we have to remove all but one edge of $K_{1,q}$. Thus $b_2(K_{1,q}) = q - 1$.

Now assume that $p = 2$. By Observation 8 we have $\gamma_2(K_{2,q}) = 2$. Let us observe that $\gamma_2(K_{2,q} - a_1b_1) = 3$. Consequently, $b_2(K_{2,q}) = 1 = p - 1$.

Now let us assume that $p = 3$. By Observation 8 we have $\gamma_2(K_{3,q}) = 3$. If $q = 3$, then it is not difficult to verify that removing any two edges does not increase the 2-domination number. We have $\gamma_2(K_{3,3} - a_1b_1 - a_1b_2 - a_2b_1) = 4 > 3 = \gamma_2(K_{3,3})$. Therefore $b_2(K_{3,3}) = 3$. Now assume that $q \geq 4$. It is easy to see that removing one edge does not increase the 2-domination number. Let us observe that $\gamma_2(K_{3,q} - a_1b_1 - a_2b_1) = 4$. Therefore $b_2(K_{3,q}) = 2 = p - 1$ if $q \geq 4$.

Now assume that $p \geq 4$. By Observation 8 we have $\gamma_2(K_{p,q}) = 4$. If $q = 4$, then it is not very difficult to verify that removing any four edges does not increase the 2-domination number. Let us observe that $\gamma_2(K_{4,4} - a_1b_1 - a_1b_2 - a_1b_3 - a_2b_1 - a_3b_1) = 5$. Consequently, $b_2(K_{4,4}) = 5$. Now assume that $q \geq 5$. Let E' be a subset of the set of edges of $K_{p,q}$, and let $H = K_{p,q} - E'$. Let us observe that if there are vertices a_i and a_j such that $d_H(a_i) = d_H(a_j) = q$ and vertices b_k and b_l such that $d_H(b_k) = d_H(b_l) = p$, then $b_2(H) = 4$. Therefore removing any $p - 2$ edges of $K_{p,q}$ does not increase the 2-domination number. Let $E' = \{a_1b_1, a_2b_1, \ldots, a_{p-1}b_1\}$. We have $\gamma_2(H) = 5$ as the vertex b_1 has to belong to every 2DS of the graph H. This implies that $b_2(K_{p,q}) = p - 1$ if $p \geq 4$ and $q \geq 5$.

A paired dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching. The paired domination number of G, denoted by $\gamma_p(G)$, is the minimum cardinality of a paired dominating set of G. The paired bondage number, denoted by $b_p(G)$, is the minimum cardinality among all sets of edges $E' \subseteq E$ such that $\delta(G - E') \geq 1$ and $\gamma_p(G - E') < \gamma_p(G)$. If for every $E' \subseteq E$, either $\gamma_p(G - E') = \gamma_p(G)$ or $\delta(G - E') = 0$, then we define $b_p(G) = 0$, and we say that G is a γ_p-strongly stable graph. Raczek [11] noticed that if $H \subseteq G$, then $b_p(H) \leq b_p(G)$. Let us observe that no inequality of such type is possible for the 2-bondage. Consider the complete bipartite graphs $K_{1,3}$, $K_{2,3}$, and $K_{3,3}$. Obviously, $K_{1,3} \subseteq K_{2,3} \subseteq K_{3,3}$. Using Proposition 13 we get $b_2(K_{1,3})$.
The authors of [4] proved that the bondage number of any tree is either one or two. Let us observe that for any non-negative integer there exists a tree with such 2-bondage number, as by Proposition 13 we have \(b_2(K_{1,m}) = m - 1 \). Obviously, \(b_2(P_1) = 0 \) and \(b_2(P_2) = 0 \). Let us observe that the paths \(P_1 \) and \(P_2 \) are the only \(\gamma_2 \)-strongly stable trees. We characterize all trees with 2-bondage number equaling one or two.

Let \(T_0 \) be a family of trees that have a strong support vertex of degree three, or a vertex adjacent to at least two support vertices of degree two, or a vertex which does not belong to any minimum 2-dominating set and is adjacent to a star \(K_{1,3} \) through the central vertex.

Now we prove that the 2-bondage number of every tree of the family \(T_0 \) is either one or two.

Lemma 14 If \(T \in T_0 \), then \(b_2(T) \in \{1, 2\} \).

Proof First assume that \(T \) has a strong support vertex, say \(x \), of degree three. Let \(y \) and \(z \) be leaves adjacent to \(x \). The neighbor of \(x \) other than \(y \) and \(z \) is denoted by \(t \). Let \(T' = T - x - y - z \). Let \(D' \) be any \(\gamma_2(T') \)-set. It is easy to observe that \(D' \cup \{y, z\} \) is a 2DS of the tree \(T \). Thus \(\gamma_2(T) \leq \gamma_2(T') + 2 \). Now we get \(\gamma_2(T - xy) = \gamma_2(T') + \gamma_2(P_1) + \gamma_2(P_2) = \gamma_2(T') + 3 \geq \gamma_2(T) + 1 > \gamma_2(T) \). This implies that \(0 \neq b_2(T) \leq 2 \), that is, \(b_2(T) \in \{1, 2\} \).

Now assume that \(T \) has a vertex, say \(x \), adjacent to at least two support vertices of degree two. One of them let us denote by \(y \). The leaf adjacent to \(y \) is denoted by \(z \). Let \(T' = T - y - z \). Let us observe that there exists a \(\gamma_2(T') \)-set that contains the vertex \(x \). Let \(D' \) be such a set. It is easy to see that \(D' \cup \{z\} \) is a 2DS of the tree \(T \). Thus \(\gamma_2(T) \leq \gamma_2(T') + 1 \). Now we get \(\gamma_2(T - xy) = \gamma_2(T' \cup P_1 \cup P_2) = \gamma_2(T') + \gamma_2(P_1) + \gamma_2(P_2) = \gamma_2(T') + 2 \geq \gamma_2(T) + 1 > \gamma_2(T) \). This implies that \(b_2(T) = 1 \).

Now assume that \(T \) has a vertex, say \(x \), which does not belong to any \(\gamma_2(T) \)-set, and is adjacent to a star \(K_{1,3} \) through the central vertex, say \(y \). The leaves adjacent to \(y \) we denote by \(a, b, \) and \(c \). Let \(D \) be any \(\gamma_2(T) \)-set. By Observation 2 we have \(a, b, c \in D \). The vertex \(x \) does not belong to any \(\gamma_2(T) \)-set, thus \(x, y \notin D \). Let \(T' = T - a - b \). It is easy to observe \(D \setminus \{a, b\} \) is not a 2DS of the tree \(T' \) as the vertex \(y \) has only one neighbor in \(D \setminus \{a, b\} \). Therefore \(\gamma_2(T') > \gamma_2(T) - 2 \). Now we get \(\gamma_2(T - ya - yb) = \gamma_2(T' \cup P_1 \cup P_2) = \gamma_2(T') + 2 \gamma_2(P_1) = \gamma_2(T') + 2 > \gamma_2(T) \). This implies that \(b_2(T) \in \{1, 2\} \).\(\blacksquare \)

We characterize all trees with 2-bondage number equaling one or two. For this purpose we introduce a family \(T \), which consists of the path \(P_3 \), all trees of the family \(T_0 \), and trees \(T_k \) that can be obtained as follows. Let \(T_1 \) be an element of \(T_0 \). If \(k \) is a positive integer, then \(T_{k+1} \) can be obtained recursively from \(T_k \) by one of the following operations.

- **Operation \(O_1 \)**: Attach a star by joining the central vertex to any vertex of \(T_k \).
- **Operation \(O_2 \)**: Attach a path \(P_2 \) and a non-negative number of vertices to a leaf of \(T_k \).

Now we prove that the 2-bondage number of every tree of the family \(T \) is either one or two.

Lemma 15 If \(T \in T \), then \(b_2(T) \in \{1, 2\} \).

Proof Obviously, \(b_2(P_3) = 1 \). If \(T \in T_0 \), then by Lemma 14 we have \(b_2(T) \in \{1, 2\} \). Now assume that \(T \in T \setminus (T_0 \cup \{P_3\}) \). We use the induction on the number \(k \) of operations performed to construct the tree \(T \). Let \(k \geq 2 \) be an integer. Assume that the result is true for every tree \(T' = T_k \) of the family \(T \) constructed by \(k - 1 \)
them from the set D implies that all leaves adjacent to x. The vertex to which x is attached is denoted by y. Let D' be any $\gamma_2(T')$-set. It is easy to observe that the elements of the set D' together with the leaves of the the attached star form a 2DS of the tree T. Thus $\gamma_2(T) \leq \gamma_2(T') + m$. The assumption $b_2(T') \in \{1, 2\}$ implies that there exists $E' \subseteq E(T')$ such that $|E'| \leq 2$ and $\gamma_2(T' - E') > \gamma_2(T')$. By T' $(T''y$, respectively) we denote the component of $T - E'$ $(T' - E'$, respectively) which contains the vertex y. Let us observe that there exists a $\gamma_2(T')$-set that does not contain the vertex x. Let D'' be such a set. Observation 2 implies that all leaves of the attached star belong to the set D''. Observe that after removing the leaves of the attached star from the set D'' we get a 2DS of the tree T''. Therefore $\gamma_2(T'') \leq \gamma_2(T'') - m$. Now we get $\gamma_2(T - E') = \gamma_2(T - E' - T'') + \gamma_2(T'') \geq \gamma_2(T - E' - T'') + \gamma_2(T'') + m = \gamma_2(T' - E') + \gamma_2(T'') + m = \gamma_2(T' - E') + m > \gamma_2(T') + m \geq \gamma_2(T)$. This implies that $0 \neq b_2(T') \leq 2$, and consequently, $b_2(T') \in \{1, 2\}$.

Now assume that T is obtained from T' by Operation O_2. Assume that we attach one path P_2 and $k \geq 0$ vertices. The vertex to which are attached new vertices we denote by x. Let D' be any $\gamma_2(T')$-set. By Observation 2 we have $x \in D'$. It is easy to observe that the elements of the set D' together with all leaves of T which do not exist in T' form a 2DS of the tree T. Thus $\gamma_2(T) \leq \gamma_2(T') + k + 1$. The assumption $b_2(T') \in \{1, 2\}$ implies that there exists $E' \subseteq E(T')$ such that $|E'| \leq 2$ and $\gamma_2(T' - E') > \gamma_3(T')$. By T' $(T''z$, respectively) we denote the component of $T - E'$ $(T' - E'$, respectively) which contains the vertex x. Let us observe that there exists a $\gamma_2(T'')$-set that contains the vertex x. Let D'' be such a set. Observation 2 implies that all leaves of T which do not exist in T' belong to the set D''. The set D'' is minimal, thus no vertex of T, which neither exists in the tree T' nor is a leaf, belongs to the set D''. It is easy to observe that after removing from D all leaves of T which do not exist in T' we get a 2DS of the tree T''. Therefore $\gamma_3(T''z) \leq \gamma_2(T'') - k - 1$. Now we get $\gamma_2(T - E') = \gamma_3(T - E' - T''z) + \gamma_2(T''z) \geq \gamma_2(T - E' - T''z) + \gamma_2(T''z) + k + 1 = \gamma_2(T' - E') + k + 1 \geq \gamma_2(T)$. This implies that $b_2(T') \in \{1, 2\}$.

Now we prove that if the 2-bondage number of a tree equals one or two, then the tree belongs to the family T.

Lemma 16 Let T be a tree. If $b_2(T) \in \{1, 2\}$, then $T \in T$.

Proof Let n be the number of vertices of the tree T. We proceed by induction on this number. If $\text{diam}(T) \in \{0, 1\}$, then $T \in \{P_1, P_2\}$. We have $b_2(P_1) = b_2(P_2) = 0 \notin \{1, 2\}$. Now assume that $\text{diam}(T) = 2$. Thus T is a star $K_{1,m}$. By Proposition 13 we have $b_2(K_{1,m}) = m - 1$. If $b_2(K_{1,m}) = 1$, then $m = 2$. We have $T = K_{1,2} = P_3 \in T$. If $b_2(K_{1,m}) = 2$, then $m = 3$. We have $T = K_{1,3} \in T_0 \subseteq T$ as $K_{1,3}$ has a strong support vertex of degree three.

Now assume that $\text{diam}(T) \geq 3$. Thus the order n of the tree T is at least four. We obtain the result by the induction on the number n. Assume that the lemma is true for every tree T' of order $n' < n$. We root T at a vertex r of maximum eccentricity $\text{diam}(T)$. Let t be a leaf at maximum distance from r, v be the parent of t, and u be the parent of v in the rooted tree. If $\text{diam}(T) \geq 4$, then let w be the parent of u. By T_x let us denote the subtree induced by a vertex x and its descendants in the rooted tree T.

First assume that $d_T(v) \geq 5$. Let $T' = T - T_v$. Let us observe that there exists a $\gamma_2(T)$-set that does not contain the vertex v. Let D be such a set. Observation 2 implies that all leaves adjacent to v belong to the set D. Observe that after removing them from the set D we get a 2DS of the tree T'. Therefore $\gamma_2(T') \leq \gamma_2(T)$
The assumption \(b_2(T) \in \{1, 2\} \) implies that there exists \(E' \subseteq E(T) \) such that \(|E'| = b_2(T) \leq 2\) and \(\gamma_2(T - E') > \gamma_2(T) \). In every \(\gamma_2(T)\)-set the vertex \(v \) has at least four neighbors. This implies that the set \(E' \) does not contain any edge incident to \(v \). By \(T''(T''') \), respectively, we denote the component of \(T - E' \) (\(T'' - E' \), respectively) which contains the vertex \(u \). Let \(D'' \) be any \(\gamma_2(T'')\)-set. It is easy to observe that the elements of the set \(D'' \) together with the leaves adjacent to \(v \) form a 2DS of the tree \(T'' \). Thus \(\gamma_2(T'') \leq \gamma_2(T''') + d_T(v) - 1 \). Now we get \(\gamma_2(T' - E') = \gamma_2(T' - E' - T''') + \gamma_2(T''') \geq \gamma_2(T' - E' - T''') + \gamma_2(T'' - d_T(v) + 1 = \gamma_2(T' - E') + \gamma_2(T'') \geq \gamma_2(T' - E') + d_T(v) + 1 > \gamma_2(T) - d_T(v) + 1 \geq \gamma_2(T') \). This implies that \(0 \neq b_2(T') \leq |E'| \leq 2 \), and consequently, \(b_2(T') \in \{1, 2\} \).

By the inductive hypothesis we have \(T' \in T \). The tree \(T \) can be obtained from \(T' \) by Operation \(O_1 \). Thus \(T \in T \).

Now assume that \(d_T(v) = 4 \). The leaves adjacent to \(v \) and different from \(t \) are denoted by \(a \) and \(b \). If no \(\gamma_2(T)\)-set contains the vertex \(u \), then \(T \in T_0 \) as \(u \) is adjacent to a star \(K_{1,3} \) through the central vertex. Now assume that there exists a \(\gamma_2(T)\)-set that contains the vertex \(u \). Let \(D \) be such a set. By Observation 2 we have \(t, a, b \in D \). The set \(D \) is minimal, and thus \(v \notin D \). Let \(T' = T - T_v \). Observe that \(D \setminus \{t, a, b\} \) is a 2DS of the tree \(T' \). Therefore \(\gamma_2(T') \leq \gamma_2(T) - 3 \). The assumption \(b_2(T) \in \{1, 2\} \) implies that there exists \(E' \subseteq E(T) \) such that \(|E'| = b_2(T) \leq 2 \) and \(\gamma_2(T - E') > \gamma_2(T) \). The vertex \(v \) has four neighbors in \(D \), and thus the set \(E' \) does not contain any edge incident to \(v \). By \(T'''(T'''), \) respectively, we denote the component of \(T - E' \) (\(T''' - E' \), respectively) which contains the vertex \(u \). Let \(D''' \) be any \(\gamma_2(T'''')\)-set. It is easy to observe that \(D''' \cup \{t, a, b\} \) is a 2DS of the tree \(T''' \). Thus \(\gamma_2(T''') \leq \gamma_2(T''''') + 3 \). Now we get \(\gamma_2(T' - E') = \gamma_2(T' - E' - T''''') + \gamma_2(T''''') \geq \gamma_2(T' - E' - T''''') + \gamma_2(T''') - 3 = \gamma_2(T' - E' - T''') + \gamma_2(T''') - 3 = \gamma_2(T - E') - 3 > \gamma_2(T) - 3 \geq \gamma_2(T) \). Now we conclude that \(b_2(T') \in \{1, 2\} \).

By the inductive hypothesis we have \(T' \in T \). The tree \(T \) can be obtained from \(T' \) by Operation \(O_1 \). Thus \(T \in T \).

Now assume that \(d_T(v) = 3 \). The vertex \(v \) is a strong support vertex of degree three. Thus \(T \in T_0 \subseteq T \).

Now assume that \(d_T(v) = 2 \). First assume that some child of \(u \) other than \(v \), say \(x \), is a support vertex. It suffices to consider only the possibility when \(x \) is adjacent to exactly one leaf. The vertex \(u \) is adjacent to at least two support vertices of degree two. Thus \(T \in T_0 \subseteq T \).

Now assume that every child of \(u \) different from \(v \) is a leaf. Let \(T' \) be a tree that differs from \(T - T_u \) only in that it has the vertex \(u \). Let us observe that there exists a \(\gamma_2(T)\)-set that contains the vertex \(u \). Let \(D \) be such a set. Observation 2 implies that all leaves of \(T_u \) belong to the set \(D \). Since \(D \) is minimal, it does not contain any vertex, which neither exists in the tree \(T' \) nor is a leaf. It is easy to observe that after removing from \(D \) all leaves of \(T_u \) we get a 2DS of the tree \(T' \). Therefore \(\gamma_2(T') \leq \gamma_2(T) - d_T(u) + 1 \). The assumption \(b_2(T) \in \{1, 2\} \) implies that there exists \(E' \subseteq E(T) \) such that \(|E'| = b_2(T) \leq 2 \) and \(\gamma_2(T - E') > \gamma_2(T) \). Let us observe that the set \(E' \) does not contain any edge incident to a leaf adjacent to \(u \). Assume that \(E' \) contains \(uw \) or \(vt \). This implies that no \(\gamma_2(T)\)-set contains the vertex \(v \). Let us observe that \(\gamma_2(T' - uw) > \gamma_2(T') \). This implies that \(b_2(T') = 1 \). Now assume that the set \(E' \) does not contain any edge of \(T_u \). By \(T''(T''') \), respectively, we denote the component of \(T - E' \) (\(T'' - E' \), respectively) which contains the vertex \(u \). Let \(D'' \) be any \(\gamma_2(T'')\)-set. By Observation 2 we have \(u \in D'' \). It is easy to observe that the elements of the set \(D'' \) together with all leaves of \(T_u \) form a 2DS of the tree \(T_u \). Thus \(\gamma_2(T_u) \leq \gamma_2(T''') + d_T(u) - 1 \). Now we get \(\gamma_2(T' - E') = \gamma_2(T' - E' - T''') + \gamma_2(T''') \geq \gamma_2(T' - E' - T''') + \gamma_2(T''') + 1 = \gamma_2(T' - E') + d_T(u) + 1 \geq \gamma_2(T) + d_T(u) + 1 \geq \gamma_2(T') \). Now we conclude that
REFERENCES

\[b_2(T') \in \{1, 2\} \]. By the inductive hypothesis we have \(T' \in T \). The tree \(T \) can be obtained from \(T'' \) by Operation \(O_2 \). Thus \(T \in T \).

As an immediate consequence of Lemmas 15 and 16, we have the following characterization of trees with 2-bondage number equaling one or two.

Theorem 2.1 Let \(T \) be a tree. Then \(b_2(T) \in \{1, 2\} \) if and only if \(T \in T \).

References

[5] K. Hartnell and D. Rall, A characterization of trees in which no edge is essential to the domination number, Ars Combinatoria 33 (1992), 65–76.