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A 2-dominating set of a graph G = (V, E) is a set D of vertices of G such that every vertex of
V(G) \ D has at least two neighbors in D. The 2-domination number of a graph G, denoted
by 72(G), is the minimum cardinality of a 2-dominating set of G. The 2-bondage number of
G, denoted by b2(G), is the minimum cardinality among all sets of edges E’ C E such that
v2(G—E") > ~v2(G). If for every E’ C E we have y72(G—E’) = v2(G), then we define b2 (G) = 0,
and we say that G is a v2-strongly stable graph. First we discuss the basic properties of 2-
bondage in graphs. We find the 2-bondage numbers for several classes of graphs. Next we
show that for every non-negative integer there exists a tree with such 2-bondage number.
Finally, we characterize all trees with 2-bondage number equaling one or two.
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1. Introduction

Let G = (V,E) be a graph. By the neighborhood of a vertex v of G we mean
the set Ng(v) = {u € V(G): uwv € E(G)}. The degree of a vertex v, denoted
by dg(v), is the cardinality of its neighborhood. By a leaf we mean a vertex of degree
one, while a support vertex is a vertex adjacent to a leaf. We say that a support
vertex is strong if it is adjacent to at least two leaves. The distance between two
vertices of a graph is the number of edges in a shortest path connecting them. The
eccentricity of a vertex is the greatest distance between it and any other vertex.
The diameter of a graph G, denoted by diam(G), is the maximum eccentricity
among all vertices of G. The path (cycle, respectively) on n vertices is denoted
by P, (C,, respectively). A wheel W,,, where n > 4, is a graph with n vertices,
formed by connecting a vertex to all vertices of the cycle C,,_1. By a star we mean
a connected graph in which exactly one vertex has degree greater than one. Let
K, 4 denote a complete bipartite graph the partite sets of which have cardinalities p
and q.

A subset D C V(@) is a dominating set of G if every vertex of V(G) \ D has
a neighbor in D, while it is a 2-dominating set, abbreviated as 2DS, of G if every
vertex of V(G)\ D has at least two neighbors in D. The domination (2-domination,
respectively) number of a graph G, denoted by v(G) (y2(G), respectively), is the
minimum cardinality of a dominating (2-dominating, respectively) set of G. Note
that 2-domination is a type of multiple domination in which each vertex, which is
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not in the dominating set, is dominated at least k times for a fixed positive integer k.
Multiple domination was introduced by Fink and Jacobson [3], and further studied
for example in [1, 13]. For a comprehensive survey of domination in graphs, see [7,
8].
The bondage number b(G) of a graph G is the minimum cardinality among all
sets of edges E' C F such that v(G — E') > ~(G). If for every E/ C E we have
Y(G—E") = v(Q), then we define b(G) = 0, and we say that G is a y-strongly stable
graph. Bondage in graphs was introduced in [4], and further studied for example
in [2, 5, 6, 9-12, 14].

We define the 2-bondage number of G, denoted by b2(G), to be the minimum
cardinality among all sets of edges E' C E such that v2(G — E’) > ~,(G). Thus
b2(G) is the minimum number of edges of G that have to be removed in order to
increase the 2-domination number. If for every E C E we have v2(G—E’) = 72(G),
then we define b2(G) = 0, and we say that G is a vp-strongly stable graph.

First we discuss the basic properties of 2-bondage in graphs. We find the 2-
bondage numbers for several classes of graphs. Next we show that for every non-
negative integer there exists a tree with such 2-bondage number. Finally, we char-
acterize all trees with 2-bondage number equaling one or two.

2. Results

We begin with the following observations.

Observation 2 Every leaf of a graph G is in every v2(G)-set.
Observation 3 If H C G and V(H) = V(G), then v(H) > 72(G).
Observation 4 For every positive integer n we have (k) = min{2,n}.
Observation 5 If n is a positive integer, then v2(P,) = [n/2]| + 1.
Observation 6 For every integer n > 3 we have v2(Cy) = [(n+1)/2].
Observation 7 For every integer n > 4 we have

2 if n=4,5;
72(Wn) = { [(n+1)/3] +1ifn > 6.

Observation 8 Let p and ¢ be positive integers such that p < q. Then

_ Jmax{g,2}ifp=1;
72(Kpq) = {min{p, 4} if p > 2.

First we find the 2-bondage numbers of complete graphs.

Proposition 9 For every positive integer n we have

0 ifn=1,2;
ba(Kn) = { |2n/3] otherwise.

Proof Obviously, by(K7) = 0 and ba(K2) = 0. Now assume that n > 3. Let
V(Ky) = {vi,v2,...,v,}. Observe that the 2-domination number of a graph equals
two if and only if there is a pair of vertices, which are both adjacent to all ver-
tices other than themselves. Let E' C E(K,). Let us observe v3(K,, — E') > 2
if and only if at most one vertex of K, is not incident to any edge of E’, and
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every edge of E’ is adjacent to some other edge of E’. We want to choose a
smallest set £/ C E(K,,) satisfying the above condition. Let us observe that the
most efficient way is to choose for example the edges vive, vovs, V45, V5V, and
so on. Let k be a positive integer. If n = 3k, then we have to remove 2k edges.
Thus ba(Ksi) = 2k = 2n/3 = |2n/3]. If n = 3k + 1, then we also remove 2k
edges as one vertex can remain universal. We have by (Ksx41) = 2k = |2k +2/3]
= [2(3k+1)/3| = [2n/3]. Now assume that n = 3k + 2. If we remove the edges
V1V2, V2U3, V4Us5, UsVG, - - - , U3k—2U3k—1, U3k—1V3k, then the vertices wvsp+1 and vsgio
remain universal. Therefore by(K3ky2) > 2k. Let us observe that removing also
the edge vsrvsr11 suffices to increase the 2-domination number. This implies that
ba(Kski2) =2k+1=|2k+4/3| =23k +2)/3] = [2n/3]. ]

Now we calculate the 2-bondage numbers of paths.

Proposition 10 If n is a positive integer, then

0 forn=1,2;
bao(Pn) = {1 for n > 3.

Now we investigate the 2-bondage in cycles.

Proposition 11 For every integer n > 3 we have

1if n is even;

b2(Cn) = {2 if n is odd.

Now we calculate the 2-bondage numbers of wheels.

Proposition 12 For every integer n > 4 we have

lifn=25;
bo(Wy,) =< 2if n # 3k + 2;
3 otherwise.

Proof Let E(W,) = {vive,v1vs,...,010y, U203, V304, . .., Un_1Vp, UpU2}. Using
Proposition 9 we get bo(Wy) = bo(Ky) = 2. By Observation 7 we have yo(W5) = 2.
We also have vo(W5 — vovg) = 3 > 2 = ~(W5). Thus bo(W5) = 1. Now as-
sume that n > 6. If we remove an edge incident to vy, say vivs, then we get
Y2(Wy, — v1v2) = v2(W,,) as we can construct a y2(W,,)-set that contains the ver-
tices v1 and wo; such set is also a 2DS of the graph W), — vive. If we remove an
edge non-incident to vy, say vovs, then we get vo(W,, — vavs) = v2(W),,) as we can
construct a vy (W;,)-set that does not contain the vertices vy and v3; such set is also
a 2DS of the graph W,, — vyvs. This implies that bo(W,,) # 1. First assume that
n = 3k or n = 3k + 1. Let us remove two edges non-incident to v; and incident
to the same vertex v; (for some i # 1). For example, we remove the edges v,,—1vy,
and v,ve. Now we find a relation between the numbers vo(W;, — vy—1v, — v,V2)
and yo(W,, — vy,). Let D be any ~o(W,, — vp_1v, — vyv2)-set. By Observation 2
we have v, € D. Let us observe that D \ {v,} is a 2DS of the graph W,, — v,.
Thus v (W, — v,) < v2 (W, — vp—10, — vv2) — 1. Observe that W,, — v, is a sub-
graph of W, _1 having the same set of vertices, as W,,_1 — v,_1v9 = W, — vy,.
Using Observations 3 and 7 we get vo(W,, — vp—10y — vpv2) > Y2(Wy — v,) + 1
> yo(Who1) +1 = [n/3] 42 = [(n+1)/3] +2 = 2(W,) +1 > 3(W,).
Therefore by(W,,) = 2 if n = 3k or n = 3k + 1. Now assume that n = 3k + 2.
It is not very difficult to verify that now removing any two edges does not in-
crease the 2-domination number. This implies that by(W,) # 1,2. Let us re-
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move three edges non-incident to vy, and forming a path P;. For example, we
remove the edges v, _9vUn_1, Up_1Vn, and v,v2. Now we find a relation between
the numbers vo(W,, — vp—2Up—1 — Vp—1Up — Vuv2) and Yo (W, — vy—1 — vy). Let
D be any vo(W,, — vp—2Un—1 — Up—10n — v,U2)-set. By Observation 2 we have
Un—1,Un € D. Let us observe that D\ {v,,—1, vy, } is a 2DS of the graph W,,—v,,_1 —vy,.
Thus (W, — vp—1 — vp) < Y2(Wy — Un—2Vp—1 — Up_10, — vpv2) — 2. Observe
that W,, — v,—1 — v, is a subgraph of W,,_s having the same set of vertices,
as Wyn_o — vp0ov9 = W, — v,_1 — v,. Using Observations 3 and 7 we get
72(Wn — Un—2Un—1 — Un—1Un — UnUQ) > 72(Wn — Un—-1 — Un) +2 > 72(Wn—2) + 2
=|(n-1)/3+3=[Bk+1)/3]+3=|Bk+3)/3]+2=[(n+1)/3] +2
= v (Wy) + 1 > vo(W,,). Therefore by(W,,) = 3 if n = 3k + 2. [ |

Now we investigate the 2-bondage in complete bipartite graphs.
Proposition 13 Let p and ¢ be positive integers such that p < ¢. Then
q—1lifp=1;

3 ifp=qg=23;

5 ifp=q=4;
p — 1 otherwise.

ba (Kp,q) =

Proof Let E(Kp4) = {abj: 1 <i<pand1l<j<gq} Ifp=1,then K, is a star.
We have by(K7,1) = 0= ¢g—1.If ¢ > 2, then it is not difficult to verify that in order
to increase the 2-domination number we have to remove all but one edge of K 4.
Thus by(K14) =q— 1.

Now assume that p = 2. By Observation 8 we have v2(K>,) = 2. Let us observe
that vo(K24 — a1b1) = 3. Consequently, ba(K24) =1=p— 1.

Now let us assume that p = 3. By Observation 8 we have 12(K3,) = 3. If
q = 3, then it is not difficult to verify that removing any two edges does not
increase the 2-domination number. We have vo(K3 3 — a1by — a1ba —agb) =4 >3
= 72(K33). Therefore ba(K33) = 3. Now assume that ¢ > 4. It is easy to see that
removing one edge does not increase the 2-domination number. Let us observe that
Y¥2(K3,4 — a1by — agby) = 4. Therefore by(K34) =2=p—1if ¢ > 4.

Now assume that p > 4. By Observation 8 we have y2(K,4) = 4. If ¢ = 4, then
it is not very difficult to verify that removing any four edges does not increase the
2-domination number. Let us observe that (K44 —a1b1 —a1bs —a1bz —agby —aszby)
= 5. Consequently, ba(Ky4) = 5. Now assume that ¢ > 5. Let E' be a subset of
the set of edges of K, 4, and let H = K, , — E’. Let us observe that if there are
vertices a; and a; such that dy(a;) = dy(a;) = q and vertices b, and b; such that
dp(by) = di(by) = p, then ba(H) = 4. Therefore removing any p — 2 edges of K,

does not increase the 2-domination number. Let E' = {a1b;, agby, ..., ap—1b1}. We
have y5(H) = 5 as the vertex b; has to belong to every 2DS of the graph H. This
implies that by(K, ) =p—1if p >4 and ¢ > 5. ]

A paired dominating set of a graph G is a dominating set of vertices whose
induced subgraph has a perfect matching. The paired domination number of G,
denoted by 7,(G), is the minimum cardinality of a paired dominating set of G.
The paired bondage number, denoted by b,(G), is the minimum cardinality among
all sets of edges £/ C E such that 6(G — E') > 1 and 7,(G — E') > ,(G). If
for every E' C E, either 7,(G — E') = 7,(G) or 6(G — E') = 0, then we define
b,(G) = 0, and we say that G is a 7,-strongly stable graph. Raczek [11] noticed
that if H C G, then b,(H) < b,(G). Let us observe that no inequality of such type
is possible for the 2-bondage. Consider the complete bipartite graphs K 3, K23,
and K3 3. Obviously, K13 C Ky3 C K33. Using Proposition 13 we get by(K7 3)



November 4, 2012

15:9 International Journal of Computer Mathematics file

International Journal of Computer Mathematics 5

=2>1= b2(K273) <3 = b2(K373).

The authors of [4] proved that the bondage number of any tree is either one or
two. Let us observe that for any non-negative integer there exists a tree with such
2-bondage number, as by Proposition 13 we have by(K,,) = m — 1. Obviously,
ba(P1) = 0 and ba(P2) = 0. Let us observe that the paths P, and P, are the only
~o-strongly stable trees. We characterize all trees with 2-bondage number equaling
one or two.

Let 7y be a family of trees that have a strong support vertex of degree three,
or a vertex adjacent to at least two support vertices of degree two, or a vertex which
does not belong to any minimum 2-dominating set and is adjacent to a star K3
through the central vertex.

Now we prove that the 2-bondage number of every tree of the family 7 is either
one or two.

Lemma 14 If T € Ty, then bo(T) € {1, 2}.

Proof First assume that T has a strong support vertex, say x, of degree three.
Let y and z be leaves adjacent to z. The neighbor of z other than y and z is
denoted by t. Let 7" = T — x — y — z. Let D’ be any ~o(T")-set. It is easy to
observe that D" U {y, z} is a 2DS of the tree T. Thus vo(7T') < 72(T") + 2. Now we
get 12(T" —to — zy) = (T"U PLU P) = %(T") + 72(P1) + 72(P2) = 72(T") + 3
> v9(T) + 1 > v2(T). This implies that 0 # bo(7T') < 2, that is, bo(T) € {1,2}.
Now assume that T has a vertex, say x, adjacent to at least two support vertices
of degree two. One of them let us denote by y. The leaf adjacent to y is denoted
by z. Let T" = T —y — 2. Let us observe that there exists a y2(T”)-set that contains
the vertex x. Let D’ be such a set. It is easy to see that D' U {z} is a 2DS of
the tree T. Thus Y (T) < % (T’) + 1. Now we get (T — zy) = (T U P)
=% (T") + v2(P2) = %(T") + 2 > 2(T) + 1 > (7). This implies that bo(T) = 1.
Now assume that T has a vertex, say =, which does not belong to any 2 (7')-set,
and is adjacent to a star K 3 through the central vertex, say y. The leaves adjacent
to y we denote by a, b, and c. Let D be any 2(T')-set. By Observation 2 we have
a,b,c € D. The vertex = does not belong to any ~o(7')-set, thus x,y ¢ D. Let
T' =T —a—b. It is easy to observe D \ {a,b} is not a 2DS of the tree 7" as the
vertex y has only one neighbor in D\ {a, b}. Therefore vo(T") > ~2(T) — 2. Now we
get 72(T' — ya — yb) = 72(T" U PLU Py) = 72(T") + 272(P1) = 72(1") + 2 > 72 (7).
This implies that bo(T) € {1, 2}. [ |

We characterize all trees with 2-bondage number equaling one or two. For this
purpose we introduce a family 7, which consists of the path Pj, all trees of the
family 7o, and trees T} that can be obtained as follows. Let T} be an element of 7j.
If k is a positive integer, then T can be obtained recursively from T} by one of
the following operations.

e Operation Op: Attach a star by joining the central vertex to any vertex of Tj.
e Operation Oy: Attach a path P, and a non-negative number of vertices to a leaf
of Tk.

Now we prove that the 2-bondage number of every tree of the family 7 is either
one or two.

Lemma 15 If T € T, then bo(T') € {1,2}.

Proof Obviously, ba(P3) = 1. If T' € Ty, then by Lemma 14 we have b2(T') € {1, 2}.
Now assume that T' € T \ (7o U {Ps}). We use the induction on the number k of
operations performed to construct the tree T'. Let £ > 2 be an integer. Assume
that the result is true for every tree T = T}, of the family 7 constructed by k& — 1
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operations. Let T' = Tj11 be a tree of the family 7 constructed by k operations.

First assume that T is obtained from 7" by operation ;. The support vertex
of the attached star K ,, is denoted by z. The vertex to which z is attached is
denoted by y. Let D’ be any ~o(T")-set. It is easy to observe that the elements of the
set D’ together with the leaves of the the attached star form a 2DS of the tree T.
Thus v2(T) < v2(T") 4+ m. The assumption bo(T”) € {1,2} implies that there exists
E’' C E(T") such that |E'| <2 and v2(T" — E') > v2(T"). By TY (T", respectively)
we denote the component of T — E' (T” — E’, respectively) which contains the
vertex y. Let us observe that there exists a vo(7TY)-set that does not contain the
vertex x. Let DY be such a set. Observation 2 implies that all leaves of the attached
star belong to the set DY. Observe that after removing the leaves of the attached
star from the set DY we get a 2DS of the tree T"Y. Therefore vy2(T") < 42(TY) —m.
Now we get v2(T'— E') = 7o(T' = E' = TY) +72(TY) 2 72(T — E' = TY) +7(T") + m
=T —E —TY)+5(TY) +m =T — E')+ m > v(T") + m > v(T). This
implies that 0 # ba(T) < 2, and consequently, by(T') € {1,2}.

Now assume that 7T is obtained from 7" by Operation Oy. Assume that we attach
one path P, and k > 0 vertices. The vertex to which are attached new vertices we
denote by z. Let D' be any ~2(T")-set. By Observation 2 we have x € D’. It is
easy to observe that the elements of the set D’ together with all leaves of T which
do not exist in 7" form a 2DS of the tree 7. Thus v2(7) < ¥2(T") + k + 1. The
assumption by(7”) € {1,2} implies that there exists £/ C F(T") such that |E’| < 2
and vo(T' — E') > vo(T"). By T* (T"*, respectively) we denote the component of
T—FE' (T'— FE', respectively) which contains the vertex x. Let us observe that there
exists a y2(T7)-set that contains the vertex x. Let D* be such a set. Observation 2
implies that all leaves of T" which do not exist in 7" belong to the set D*. The
set D* is minimal, thus no vertex of T, which neither exists in the tree 7" nor
is a leaf, belongs to the set D®. It is easy to observe that after removing from D
all leaves of T" which do not exist in 77 we get a 2DS of the tree T"*. Therefore
Y2(T") < 72(T%) — k — 1. Now we get (T — E') = 7o(T — E' = T) + 7(T%)
> (T = B = T%) 4 (T) + b+ 1 = (T~ B' = T%) + 3(T"%) + k + 1
=%((T'—E)+k+1>%(T)+k+1>~(T). This implies that by(T") € {1,2}. W

Now we prove that if the 2-bondage number of a tree equals one or two, then
the tree belongs to the family 7.

Lemma 16 Let 7" be a tree. If bo(T) € {1,2}, then T' € T.

Proof Let n mean the number of vertices of the tree T. We proceed by induction
on this number. If diam(7T") € {0,1}, then T' € { Py, P»}. We have ba(Py) = ba(Ps)
= 0 ¢ {1,2}. Now assume that diam(7") = 2. Thus T is a star K ,,. By Proposi-
tion 13 we have ba(K1 ) = m—1. If ba(K ) = 1, then m = 2. We have T' = K o
=P3 € T.If by(K1m) =2, then m = 3. We have T = K3 € To C T as K13 has
a strong support vertex of degree three.

Now assume that diam(7") > 3. Thus the order n of the tree T is at least four.
We obtain the result by the induction on the number n. Assume that the lemma
is true for every tree T” of order n’ < n. We root T at a vertex r of maximum
eccentricity diam(7'). Let ¢ be a leaf at maximum distance from r, v be the parent
of ¢, and u be the parent of v in the rooted tree. If diam(7") > 4, then let w be
the parent of u. By T, let us denote the subtree induced by a vertex x and its
descendants in the rooted tree T

First assume that dp(v) > 5. Let T/ = T — T,,. Let us observe that there exists
a 2(T')-set that does not contain the vertex v. Let D be such a set. Observation 2
implies that all leaves adjacent to v belong to the set D. Observe that after removing
them from the set D we get a 2DS of the tree T'. Therefore 2(T") < ~2o(T)
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—dp(v) + 1. The assumption bo(T) € {1,2} implies that there exists E' C E(T)
such that |E’| = bo(T) < 2 and 72(T — E') > 42(T). In every v2(T')-set the vertex v
has at least four neighbors. This implies that the set E’ does not contain any
edge incident to v. By T" (T, respectively) we denote the component of T'— E’
(T" — E’, respectively) which contains the vertex u. Let D' be any o (T"")-set. It is
easy to observe that the elements of the set D" together with the leaves adjacent
to v form a 2DS of the tree T". Thus v2(T%) < 72(T™) + dr(v) — 1. Now we get
1T = ) = p(T' — B! — T) 4 7(T") > 7o(T" — B~ T) 4+ 4o(T") — dp(v) + 1
=72(T—E"=T")+72(T") —dr(v) +1 = y2(T'— E') —dr(v) + 1 > 7(T) —dr(v) +1
> ~49(T"). This implies that 0 # be(T") < |E’| < 2, and consequently, bo(T") € {1, 2}.
By the inductive hypothesis we have 77 € T. The tree T can be obtained from 7’
by Operation Oq. Thus T' € T.

Now assume that dr(v) = 4. The leaves adjacent to v and different from ¢ are
denoted by @ and b. If no v2(7')-set contains the vertex u, then T € Ty as u is
adjacent to a star K3 through the central vertex. Now assume that there exists
a v2(T')-set that contains the vertex u. Let D be such a set. By Observation 2
we have t,a,b € D. The set D is minimal, and thus v ¢ D. Let T/ = T — T,,.
Observe that D\ {t,a,b} is a 2DS of the tree T”. Therefore vo(T") < vo(T) — 3.
The assumption by(7T") € {1,2} implies that there exists E' C E(T') such that |F'|
=bo(T) < 2and vo(T—E’) > v2(T). The vertex v has four neighbors in D, and thus
the set E’ does not contain any edge incident to v. By T% (T, respectively) we
denote the component of T'— E’ (T' — E’, respectively) which contains the vertex u.
Let D™ be any ~2(T")-set. It is easy to observe that D' U {t,a,b} is a 2DS of
the tree T". Thus v2(T%) < 42(T™) + 3. Now we get v2(T' — E') = % (T' — F’
ST 4y (T) >y (T — B = T) 4 75(T%) — 3 = 5o(T — B/ — T%) 4 75(T%) — 3
=%(T — E') —3>(T) —3 > 72(T"). Now we conclude that by(7") € {1,2}. By
the inductive hypothesis we have T" € T. The tree T can be obtained from T” by
Operation Q1. Thus T € T.

Now assume that dp(v) = 3. The vertex v is a strong support vertex of degree
three. Thus T € To C T.

Now assume that dr(v) = 2. First assume that some child of u other than v,
say x, is a support vertex. It suffices to consider only the possibility when x is
adjacent to exactly one leaf. The vertex w is adjacent to at least two support
vertices of degree two. Thus T'€ 7o C T.

Now assume that every child of u different from v is a leaf. Let 7" be a tree that
differs from T — T, only in that it has the vertex u. Let us observe that there exists
a y2(T)-set that contains the vertex u. Let D be such a set. Observation 2 implies
that all leaves of T;, belong to the set D. Since D is minimal, it does not contain
any vertex, which neither exists in the tree 7" nor is a leaf. It is easy to observe
that after removing from D all leaves of T, we get a 2DS of the tree T’. Therefore
Y2(T") < 42(T) —dp(u)+ 1. The assumption bo(T') € {1,2} implies that there exists
E’' C E(T) such that |E'| = ba(T') < 2 and (T — E’) > ~2(T'). Let us observe that
the set E’ does not contain any edge incident to a leaf adjacent to u. Assume that
E’ contains uv or vt. This implies that no ~(7T)-set contains the vertex v. Let us
observe that (T — wu) > v2(T"). This implies that bo(T") = 1. Now assume that
the set £ does not contain any edge of T,,. By T* (T"", respectively) we denote the
component of T'— E' (T" — E’, respectively) which contains the vertex u. Let D' be
any v2(T")-set. By Observation 2 we have u € D"™. It is easy to observe that the
elements of the set D' together with all leaves of T, form a 2DS of the tree T". Thus
Y2 (T%) < 3o(T"™) +dr(u) — 1. Now we get yo(T' — E') = vo(T" — E' = T™) +vo(T"")
> (T — B! = T) 4+ 75(T%) — dr(u) £ 1 = 39T — B' = T%) 4+ 5(T") — dr(u) + 1
=T —FE') —dr(u) + 1 > 7(T) —dp(u) + 1 > v(T"). Now we conclude that
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bo(T") € {1,2}. By the inductive hypothesis we have T" € T. The tree T can be
obtained from 7" by Operation Q. Thus T' € T. [ |

As an immediate consequence of Lemmas 15 and 16, we have the following char-
acterization of trees with 2-bondage number equaling one or two.

Theorem 2.1 Let T be a tree. Then bo(T") € {1,2} if and only if T € T.
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