Trees having many minimal dominating sets

Marcin Krzywkowski*
e-mail: marcin.krzywkowski@gmail.com

Faculty of Electronics, Telecommunications and Informatics
Gdańsk University of Technology
Narutowicza 11/12, 80–233 Gdańsk, Poland

Abstract

We disprove a conjecture by Skupień that every tree of order \(n \) has at most \(2^n/2 \) minimal dominating sets. We construct a family of trees of both parities of the order for which the number of minimal dominating sets exceeds \(1.4167^n \). We also provide an algorithm for listing all minimal dominating sets of a tree in time \(O(1.4656^n) \). This implies that every tree has at most \(1.4656^n \) minimal dominating sets.

Keywords: minimal dominating set, tree, combinatorial bound, exponential algorithm, listing algorithm.

1 Introduction

Let \(G = (V, E) \) be a graph. The order of a graph is the number of its vertices. By the neighborhood of a vertex \(v \) of \(G \) we mean the set \(N_G(v) = \{ u \in V(G) : uv \in E(G) \} \). The degree of a vertex \(v \), denoted by \(d_G(v) \), is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly one leaf, respectively). The distance between two vertices of a graph is the number of edges in a shortest path connecting them. The eccentricity of a vertex is the greatest distance between it and any other vertex. The diameter of a graph \(G \), denoted by \(\text{diam}(G) \), is the maximum eccentricity among all vertices of \(G \). Denote by \(P_n \) a path on \(n \) vertices. By a star we mean a connected graph in which exactly one vertex has degree greater than one.

A subset \(D \subseteq V(G) \) is a dominating set of \(G \) if every vertex of \(V(G) \setminus D \) has a neighbor in \(D \). A dominating set \(D \) is minimal if no proper subset of \(D \) is a dominating set of \(G \). For a comprehensive survey of domination in graphs, see [9, 10].

One of the typical questions in graph theory is how many subgraphs of a given property can a graph on \(n \) vertices have. For example, the famous Moon and Moser theorem [14] says that every graph on \(n \) vertices has at most \(3^{n/3} \) maximal independent sets.

Combinatorial bounds are of interest not only on their own, but also because they are used for algorithm design as well. Lawler [13] used the Moon-Moser bound on the number of maximal independent sets to construct an \((1 + \sqrt{3})^n \cdot n^{O(1)} \) time graph coloring algorithm, which was the fastest one known for twenty-five years. In 2003 Eppstein [5] reduced the running time of a graph coloring to \(O(2.4151^n) \). In 2006 the running time was reduced [1, 12] to \(O(2^n) \). For an overview of the field, see [7].

*The research was supported by the Polish National Science Centre grant 2011/03/N/ST6/04404.
Fomin et al. [6] constructed an algorithm for listing all minimal dominating sets of a graph on \(n \) vertices in time \(O(1.7159^n) \). There were also given graphs \((n/6)\) disjoint copies of the octahedron) having \(15^{n/6} \approx 1.5704^n \) minimal dominating sets. This establishes a lower bound on the running time of an algorithm for listing all minimal dominating sets of a given graph.

The number of maximal independent sets in a tree was investigated in [16]. Couturier et al. [4] considered minimal dominating sets in various classes of graphs. The authors of [11] investigated the enumeration of minimal dominating sets in graphs.

Bród and Skupień [2] gave bounds on the number of dominating sets of a tree. They also characterized the extremal trees. The authors of [3] investigated the number of minimal dominating sets in trees containing all leaves.

Skupień [15] conjectured that every tree of order \(n \) has at most \(2^{n/2} \) minimal dominating sets. It turns out that there are trees having more than \(2^{n/2} \) minimal dominating sets, which contradicts the conjecture. We construct a family of trees of both parities of the order for which the number of minimal dominating sets exceeds \(1.4167^n \), thus exceeding \(2^{n/2} \). Since \(2^{n/2} \) is not a correct upper bound on the number of minimal dominating sets of a tree, we aim to prove a correct one. We provide an algorithm for listing all minimal dominating sets of a tree of order \(n \) in time \(O(1.4656^n) \). This implies that every tree has at most \(1.4656^n \) minimal dominating sets.

2 Disproof of the conjecture

Now we give an infinite family of trees \(\{ T_k \}_{k=1}^\infty \) of odd and even order for which the number of minimal dominating sets exceeds \(1.4167^n > 2^{n/2} \). Let \(T_1 \) be the tree given in Figure 1. Let \(T_{k+1} \) be a tree obtained from \(T_k \) by adding an edge connecting one of its support vertices to a support vertex of \(T_1 \).

![Figure 1: The tree \(T_1 \) with 27 vertices](image)

Now we calculate the number of minimal dominating sets of a tree \(T_k \). We root the tree \(T_1 \) at the vertex \(y \). Let \(D \) be a minimal dominating set of \(T_1 \). Observe that for every leaf, either it belongs to the set \(D \) or its neighbor belongs to \(D \). First assume that some child of \(x \) belongs to the set \(D \), and also some child of \(z \) belongs to \(D \). Thus both vertices \(x \) and \(z \) are already dominated. Since the vertex \(y \) has to be dominated, we have either \(x \in D \) or \(y \in D \) or \(z \in D \). There are \(3 \cdot (2^6 - 1)^2 \) such minimal dominating sets. Now assume that some child of \(x \) belongs to the set \(D \), while no child of \(z \) belongs to \(D \). We have either \(y \in D \) or \(z \in D \) as the vertices \(y \) and \(z \) have to be dominated. There are \(2 \cdot (2^6 - 1) \) such minimal dominating sets. The possibility when some child of \(z \) belongs to the set \(D \) and no child of \(x \) belongs to \(D \) is similar. If no child of \(x \) and \(z \) belongs to the set \(D \), then either \(x, z \in D \) or \(y \in D \). Now we conclude that the tree \(T_1 \) has \(3 \cdot (2^6 - 1)^2 + 2 \cdot 2 \cdot (2^6 - 1) + 2 = 12161 \) minimal dominating sets. While constructing trees of the family \(\{ T_k \}_{k=1}^\infty \), support vertices are connected by edges. Let us observe that every support
vertex is already dominated, as it is adjacent to a leaf. This implies that the new edges do not influence the number of minimal dominating sets. Consequently, the tree T_k has 12161^k minimal dominating sets. We have $\sqrt[3]{12161^k} = \sqrt[3]{12161} \approx 4.41667 > 4.1467$. This implies that $\Omega(4.1467^n)$ is a lower bound on the running time of an algorithm for listing all minimal dominating sets of a given tree of order n.

Independently, in 2011 Górska [8] found an infinite family of T_i-like trees, in which the vertices x and z can have arbitrarily equitably many children. This left the conjecture open only for trees of even order.

3 Listing algorithm

In this section we describe an algorithm, which lists all minimal dominating sets of a given input tree T. Denote by $\mathcal{F}(T)$ the family of sets returned by the algorithm.

Algorithm

Let T be a tree. If diam(T) = 0, then $T = P_1 = v_1$. Let $\mathcal{F}(T) = \{\{v_1\}\}$. If diam($T$) = 1, then $T = P_2 = v_1v_2$. Let $\mathcal{F}(T) = \{\{v_1\}, \{v_2\}\}$. If diam($T$) = 2, then T is a star. Denote by x the support vertex of T. Let $\mathcal{F}(T) = \{\{x\}, V(T) \setminus \{x\}\}$.

Now assume that diam(T) ≥ 3. First assume that some support vertex of T, say x, is strong. Let y be a leaf adjacent to x. Let $T' = T - y$, and let

$$\mathcal{F}(T) = \{D' : x \in D' \in \mathcal{F}(T')\} \cup \{D' \cup \{y\} : x \notin D' \in \mathcal{F}(T')\}.$$

Now assume that every support vertex of T is weak. We root T at a vertex r of maximum eccentricity diam(T). Let t be a leaf at maximum distance from r, v be the parent of t, and u be the parent of v in the rooted tree. If diam(T) ≥ 4, then let w be the parent of u. Denote by T_x the subtree induced by a vertex x and its descendants in the rooted tree T.

Assume that some child of u, say x, is a leaf. Let $T' = T - T_v$, and let

$$\mathcal{F}(T) = \{D' \cup \{v\}, D' \cup \{t\} : D' \in \mathcal{F}(T')\}.$$

Now assume that every child of u is a support vertex. The children of u are denoted by $k_1, k_2, \ldots, k_{d_T(u)}$, where $k_1 = v$. Let l_i mean the leaf adjacent to k_i. Let $p_i \in \{k_i, l_i\}$. Denote by w the parent of u. The neighbors of w other than u we denote by $m_1, m_2, \ldots, m_{d_T(w)}$. Let $T' = T - T_{k_1} - T_{k_2} - \ldots - T_{k_{d_T(u)}}$ and $T'' = T - T_u$. The components of $T'' - w$ are denoted by $T_1, T_2, \ldots, T_{d_T(w)}$, where $m_i \in V(T_i)$.

Let $\mathcal{F}(T)$ be a family as follows,

$$\begin{align*}
\mathcal{F}(T) &= \left\{ D' \cup \bigcup_{1 \leq i \leq d_T(u) - 1} \{l_i\} : D' \in \mathcal{F}(T') \right\} \\
&\cup \left\{ D'' \cup \bigcup_{1 \leq i \leq d_T(u) - 1} \{p_i\} : D'' \in \mathcal{F}(T'') \text{ and } \exists_j p_j = k_j \right\} \\
&\cup \left\{ \bigcup_{1 \leq i \leq d_T(w) - 1} D_i \cup \{u\} \cup \bigcup_{1 \leq j \leq d_T(w) - 1} \{p_j\} : m_j \notin D_j \in \mathcal{F}(T_j) \text{ and } \exists \ell p_\ell = k_\ell \right\},
\end{align*}$$

where the third component is ignored if w is adjacent to a leaf.
4 Bounding the number of minimal dominating sets

Now we prove that the running time of the algorithm from the previous section is $O(1.4656^n)$.

Theorem 1 For every tree T of order n, the algorithm from the previous section lists all minimal dominating sets in time $O(1.4656^n)$.

Proof. We prove that the running time of the algorithm is $O(1.4656^n)$. Moreover, we prove that the number of minimal dominating sets is at most α^n, where $\alpha \approx 1.46557 < 1.4656$ is the positive solution of the equation $x^4 - x^2 - x - 1 = 0$.

We proceed by induction on the number n of vertices of a tree T. If $\text{diam}(T) = 0$, then $T = P_1 = v_1$. Obviously, $\{v_1\}$ is the only minimal dominating set of the path P_1. We have $n = 1$ and $|F(T)| = 1$. Obviously, $1 < \alpha$. If $\text{diam}(T) = 1$, then $T = P_2 = v_1v_2$. It is easy to see that $\{v_1\}$ and $\{v_2\}$ are the only two minimal dominating sets of the path P_2. We have $n = 2$ and $|F(T)| = 2$. We also have $2 < \alpha^2$ as $\alpha > \sqrt{2}$. If $\text{diam}(T) = 2$, then T is a star. Denote by x the support vertex of T. It is easy to observe that $\{x\}$ and $V(T) \setminus \{x\}$ are the only two minimal dominating sets of the tree T. We have $n \geq 3$ and $|F(T)| = 2$. Consequently, $2 < \alpha^2 < \alpha^n$.

Now assume that $\text{diam}(T) \geq 3$. First assume that some support vertex of T, say x, is strong. Let y be a leaf adjacent to x. Let $T' = T - y$. Let D' be a minimal dominating set of the tree T'. If $x \in D'$, then it is easy to see that D' is a minimal dominating set of the tree T. Now assume that $x \notin D'$. It is easy to observe that $D' \cup \{y\}$ is a minimal dominating set of the tree T. Thus all elements of the family $F(T)$ are minimal dominating sets of the tree T. Now let D be any minimal dominating set of the tree T. Clearly, either the vertex x belongs to the set D or all leaves adjacent to x belong to the set D. If $x \in D$, then it is easy to see that D is a minimal dominating set of the tree T'. By the inductive hypothesis we have $D \in F(T')$. Now assume that $x \notin D$. It is evident that $D \setminus \{y\}$ is a minimal dominating set of the tree T'. By the inductive hypothesis we have $D \setminus \{y\} \in F(T')$. Therefore the family $F(T)$ contains all minimal dominating sets of the tree T. Now we get $|F(T)| = |\{D' : x \in D' \in F(T')\}| + |\{D' \cup \{y\} : x \notin D' \in F(T')\}| = |F(T')| \leq \alpha^{n-1} < \alpha^n$.

Henceforth, we can assume that every vertex of T is weak.

We now root T at a vertex r of maximum eccentricity $\text{diam}(T)$. Let t be a leaf at maximum distance from r, v be the parent of t, and u be the parent of v in the rooted tree. If $\text{diam}(T) \geq 4$, then let w be the parent of u. Denote by T_u the subtree induced by a vertex x and its descendants in the rooted tree T.

Assume that some child of u, say x, is a leaf. Let $T' = T - T_v$. Let us observe that all elements of the family $F(T)$ are minimal dominating sets of the tree T. Now let D be any minimal dominating set of the tree T. We have either $v \in D$ or $t \in D$ as the vertex t has to be dominated and the set D is minimal. Similarly, either $u \in D$ or $x \in D$. If $t \in D$, then observe that $D \setminus \{t\}$ is a minimal dominating set of the tree T'. By the inductive hypothesis we have $D \setminus \{t\} \in F(T')$. Now assume that $v \in D$. Let us observe that $D \setminus \{v\}$ is a minimal dominating set of the tree T'' as the vertex u is still dominated. By the inductive hypothesis we have $D \setminus \{v\} \in F(T'')$. Therefore the family $F(T)$ contains all minimal dominating sets of the tree T. Now we get $|F(T)| = 2|F(T')| \leq 2 \cdot \alpha^{n-2} < \alpha^2 \cdot \alpha^{n-2} = \alpha^n$.

Now assume that every child of u is a support vertex. We use the same notation as in the description of the algorithm. Let $T'' = T - T_{k_1} - T_{k_2} - \ldots - T_{k_{d(u)-1}}$ and $T'' = T - T_u$. The components of $T'' - w$ we denote by $T_1, T_2, \ldots, T_{d(u)-1}$, where $m_i \in V(T_i)$. It is not very difficult to verify that all elements of the family $F(T)$ are minimal dominating sets of the tree T. Now let D be any minimal dominating set of the tree T. If all leaves of T_u belong to the set D, then observe that $D \setminus \{l_1, l_2, \ldots, l_{d(u)-1}\}$ is a minimal dominating set of the tree T''. Now assume that some support vertex of T_u belongs to the set D. If $u \notin D$, then observe that $D \cap V(T'')$ is a minimal dominating set of the tree T''. Now assume that $u \in D$. Let us observe that neither w nor any of its neighbors other than u belongs to the set D, otherwise $D \setminus \{u\}$ is
a dominating set of the tree T, a contradiction to the minimality of D. Let us observe that $D \cap V(T_i)$ is a minimal dominating set of the tree T_i, which does not contain the vertex m_i. Now we get

$$|\mathcal{F}(T)| \leq |\mathcal{F}(T')| + (2^{d_{T}(u)}-1 - 1) \left(|\mathcal{F}(T'')| + \prod_{1 \leq i \leq d_{T}(u)-1} |D_i \in \mathcal{F}(T_i) : m_i \notin D_i| \right)$$

$$< |\mathcal{F}(T')| + (2^{d_{T}(u)}-1 - 1) \left(|\mathcal{F}(T'')| + \prod_{1 \leq i \leq d_{T}(u)-1} |\mathcal{F}(T_i)| \right)$$

$$\leq \alpha^{n-2d_{T}(u)+2} + (2^{d_{T}(u)}-1) (\alpha + 1 \leq \alpha^{n-2d_{T}(u)+1} + \alpha^{n-2d_{T}(u)}) \leq \alpha^n.$$

To show that $\alpha^{n-2d_{T}(u)+2} + (2^{d_{T}(u)}-1) (\alpha + 1 \leq \alpha^{n-2d_{T}(u)+1} + \alpha^{n-2d_{T}(u)}) \leq \alpha^n$, it suffices to show that $\alpha^2 + (2^{d_{T}(u)}-1) (\alpha + 1 \leq \alpha^{2d_{T}(u)}.$ We prove this by induction on the degree of the vertex u. For $d_{T}(u) = 2$ we have $\alpha^2 + (2^{d_{T}(u)}-1) (\alpha + 1 = \alpha^2 + \alpha + 1 = \alpha^4 = \alpha^{2d_{T}(u)}.$ Now we prove that if the inequality $\alpha^2 + (2^{d_{T}(u)}-1) (\alpha + 1 \leq \alpha^{2d_{T}(u)}$ is satisfied for an integer $k = d_{T}(u) \geq 2$, then it is also satisfied for $k + 1$. We have $\alpha^2 + (2^k - 1) (\alpha + 1 = \alpha^4 - \alpha - 1 + (2^k - 1) (\alpha + 1 = \alpha^4 + (2^k - 2) (\alpha + 1 = \alpha^4 + 2^{2k-1} (\alpha + 1 = \alpha^4 - 2\alpha^2 + 2(\alpha^2 - 2) (\alpha + 1) \leq \alpha^4 - 2\alpha^2 + 2\alpha^2 - 2\alpha - 2 < \alpha^{2k+2} + \alpha^2 (\alpha - 2) + \alpha^2 = \alpha^{2k+2} + (\alpha^2 - 2) (\alpha^2 - 2) < \alpha^{2k+2}.$

It follows from the proof of the previous theorem that any tree of order n has less than 1.4656^n minimal dominating sets.

Corollary 2 Every tree of order n has at most α^n minimal dominating sets, where $\alpha \approx 1.46557$ is the positive solution of the equation $x^4 - x^2 - x - 1 = 0$.

Acknowledgments

Thanks are due to Zdzisław Skupień for suggesting the problem.

References

