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Abstract

A 2-dominating set of a graph G = (V,E) is a set D of vertices of G

such that every vertex of V (G) \D has at least two neighbors in D. The

2-domination number of a graph G, denoted by γ2(G), is the minimum

cardinality of a 2-dominating set of G. The non-isolating 2-bondage num-

ber of G, denoted by b′2(G), is the minimum cardinality among all sets of

edges E′ ⊆ E such that δ(G − E′) ≥ 1 and γ2(G − E′) > γ2(G). If for

every E′ ⊆ E, either γ2(G−E′) = γ2(G) or δ(G−E′) = 0, then we define

b′2(G) = 0, and we say that G is a γ2-non-isolatingly strongly stable graph.

First we discuss the basic properties of non-isolating 2-bondage in graphs.

We find the non-isolating 2-bondage numbers for several classes of graphs.

Next we show that for every non-negative integer there exists a tree having

such non-isolating 2-bondage number. Finally, we characterize all γ2-non-

isolatingly strongly stable trees.
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1 Introduction

Let G = (V,E) be a graph. By the neighborhood of a vertex v of G we mean
the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v, denoted
by dG(v), is the cardinality of its neighborhood. By a leaf we mean a vertex of
degree one, while a support vertex is a vertex adjacent to a leaf. We say that
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a support vertex is strong if it is adjacent to at least two leaves. Let δ(G) mean
the minimum degree among all vertices of G. The path (cycle, respectively) on
n vertices we denote by Pn (Cn, respectively). A wheel Wn, where n ≥ 4, is
a graph with n vertices, formed by connecting a vertex to all vertices of a cycle
Cn−1. Let T be a tree, and let v be a vertex of T . We say that v is adjacent to
a tree H if there is a neighbor of v, say x, such that the tree resulting from T

by removing the edge vx, and which contains the vertex x, is a tree H. Let Kp,q

denote a complete bipartite graph the partite sets of which have cardinalities p
and q. By a star we mean a connected graph in which exactly one vertex has
degree greater than one. By a double star we mean a graph that can be obtained
from a star by joining a positive number of vertices to one of the leaves.
A subset D ⊆ V (G) is a dominating set of G if every vertex of V (G) \D has

a neighbor in D, while it is a 2-dominating set, abbreviated 2DS, of G if every ver-
tex of V (G)\D has at least two neighbors in D. The domination (2-domination,
respectively) number of a graph G, denoted by γ(G) (γ2(G), respectively), is the
minimum cardinality of a dominating (2-dominating, respectively) set of G. Note
that 2-domination is a type of multiple domination in which each vertex, which
is not in the dominating set, is dominated at least k times for a fixed positive
integer k. Multiple domination was introduced by Fink and Jacobson [3], and
further studied for example in [1, 13]. For a comprehensive survey of domination
in graphs, see [7, 8].
The bondage number b(G) of a graph G is the minimum cardinality among

all sets of edges E ′ ⊆ E such that γ(G−E ′) > γ(G). If for every E ′ ⊆ E we have
γ(G − E ′) = γ(G), then we define b(G) = 0, and we say that G is a γ-strongly
stable graph. Bondage in graphs was introduced in [4], and further studied for
example in [2, 5, 6, 9–12, 14].
We define the non-isolating 2-bondage number of a graph G, denoted by

b′2(G), to be the minimum cardinality among all sets of edges E ′ ⊆ E such that
δ(G− E ′) ≥ 1 and γ2(G − E ′) > γ2(G). Thus b′2(G) is the minimum number of
edges of G that have to be removed in order to obtain a graph with no isolated
vertices, and with the 2-domination number greater than that of G. If for every
E ′ ⊆ E, either γ2(G− E ′) = γ2(G) or δ(G− E ′) = 0, then we define b′2(G) = 0,
and we say that G is a γ2-non-isolatingly strongly stable graph.
First we discuss the basic properties of non-isolating 2-bondage in graphs.

We find the non-isolating 2-bondage numbers for several classes of graphs. Next
we show that for every non-negative integer there exists a tree having such
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non-isolating 2-bondage number. Finally, we characterize all γ2-non-isolatingly
strongly stable trees.

2 Results

We begin with the following observations.

Observation 1 Every leaf of a graph G is in every γ2(G)-set.

Observation 2 If H ⊆ G and V (H) = V (G), then γ2(H) ≥ γ2(G).

Observation 3 For every positive integer n we have γ2(Kn) = min{2, n}.

Observation 4 If n is a positive integer, then γ2(Pn) = ⌊n/2⌋+ 1.

Observation 5 For every integer n ≥ 3 we have γ2(Cn) = ⌊(n+ 1)/2⌋.

Observation 6 For every integer n ≥ 4 we have

γ2(Wn) =

{
2 if n = 4, 5;

⌊(n+ 1)/3⌋+ 1 if n ≥ 6.

Observation 7 Let p and q be positive integers such that p ≤ q. Then

γ2(Kp,q) =

{
max{q, 2} if p = 1;

min{p, 4} if p ≥ 2.

Since the definition of the non-isolating 2-bondage does not allow isolated
vertices in the searched subgraphs of a given graph, in this paper, we do not
consider removing edges that produces an isolated vertex.
First we find the non-isolating 2-bondage numbers of complete graphs.

Remark 8 For every positive integer n we have

b′2(Kn) =

{
0 if n = 1, 2, 3;

⌊2n/3⌋ otherwise.
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Proof. Of course, b′2(K1) = 0, b′2(K2) = 0, and b′2(K3) = 0. Now assume that
n ≥ 4. Let E(Kn) = {v1, v2, . . . , vn}. Let G be a graph with at least two vertices.
Let us observe that γ2(G) = 2 if and only if G has two vertices which are both
adjacent to every vertex other than they. Let E ′ ⊆ E(Kn). Let us observe
that γ2(Kn − E ′) > 2 if and only if at most one vertex of Kn is not incident to
any edge of E ′, and every edge of E ′ is adjacent to some other edge of E ′. We
want to choose a smallest set E ′ ⊆ E(Kn) satisfying the condition above while
δ(Kn − E ′) ≥ 1. Let us observe that the most efficient way of choosing edges of
Kn is to choose for example edges v1v2, v2v3, v4v5, v5v6, and so on. In this way
no vertex becomes isolated. Let k be a positive integer.
If n = 3k, then we remove 2k edges. Thus b′2(K3k) = 2k = ⌊2n/3⌋. If

n = 3k+1, then we also remove 2k edges as one vertex can remain universal. We
have b′2(K3k+1) = 2k = ⌊2k + 2/3⌋ = ⌊2(3k + 1)/3⌋ = ⌊2n/3⌋. Now assume that
n = 3k + 2. If we remove the edges v1v2, v2v3, v4v5, v5v6, . . . , v2k−2v2k−1, v2k−1v2k,
then the vertices v3k+1 and v3k+2 remain universal. Therefore b′2(K3k+2) > 2k. Let
us observe that removing the edges v1v2, v2v3, v4v5, v5v6, . . . , v2k−2v2k−1, v2k−1v2k,

v2kv2k+1 increases the 2-domination number. This implies that b′2(K3k+2) = 2k

+1 = ⌊2k + 4/3⌋ = ⌊2(3k + 2)/3⌋ = ⌊2n/3⌋.

Now we calculate the non-isolating 2-bondage numbers of paths.

Remark 9 If n is a positive integer, then

b′2(Pn) =

{
0 for n = 1, 2, 3;

1 for n ≥ 4.

Now we investigate the non-isolating 2-bondage in cycles.

Remark 10 For every integer n ≥ 3 we have

b′2(Cn) =


0 if n = 3;

1 if n is even;
2 otherwise.

Now we calculate the non-isolating 2-bondage numbers of wheels.

Remark 11 For every integer n ≥ 4 we have

b′2(Wn) =


1 if n = 5;

2 if n ̸= 3k + 2;

3 otherwise.
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Proof. Let E(Wn) = {v1v2, v1v3, . . . , v1vn, v2v3, v3v4, . . . , vn−1vn, vnv2}. Since
W4 = K4, by Remark 8 we get b′2(W4) = b′2(K4) = ⌊8/3⌋ = 2. By Observation 6
we have γ2(W5) = 2. Let us observe that γ2(W5 − v2v3) = 3 > 2 = γ2(W5).
Thus b′2(W5) = 1. Now us assume that n ≥ 6. If we remove an edge incident
with v1, say v1v2, then we get γ2(Wn − v1v2) = γ2(Wn) as we can construct
a γ2(Wn)-set that contains the vertices v1 and v2; such set is also a 2DS of the
graphWn−v1v2. If we remove an edge non-incident with v1, say v2v3, then we get
γ2(Wn − v2v3) = γ2(Wn) as we can construct a γ2(Wn)-set that does not contain
the vertices v2 and v3; such set is also a 2DS of the graphWn−v2v3. This implies
that b′2(Wn) = 0 or b′2(Wn) ≥ 2. First assume that n = 3k or n = 3k + 1. Let
us remove the edges vn−1vn and vnv2. We find a relation between the numbers
γ2(Wn − vn−1vn − vnv2) and γ2(Wn−1). Let D be any γ2(Wn − vn−1vn − vnv2)-
set. By Observation 1 we have vn ∈ D. Let us observe that D \ {vn} is a 2DS
of the graph Wn−1. Therefore γ2(Wn−1) ≤ γ2(Wn − vn−1vn − vnv2) − 1. Using
Observation 6 we get γ2(Wn − vn−1vn − vnv2) ≥ γ2(Wn−1) + 1 = ⌊n/3⌋ + 2

= ⌊(n + 1)/3⌋ + 2 > ⌊(n + 1)/3⌋ + 1 = γ2(Wn). Therefore b′2(Wn) = 2 if n = 3k

or n = 3k + 1. Now assume that n = 3k + 2. It is not difficult to verify that
now removing any two edges does not increase the 2-domination number. This
implies that b′2(Wn) = 0 or b′2(Wn) ≥ 3. Let us remove the edges vn−2vn−1, vn−1vn,
and vnv2. We find a relation between the numbers γ2(Wn − vn−2vn−1 − vn−1vn

−vnv2) and γ2(Wn−2). Let D be any γ2(Wn − vn−2vn−1 − vn−1vn − vnv2)-set. By
Observation 1 we have vn−1, vn ∈ D. Let us observe that D \ {vn−1, vn} is a 2DS
of the graph Wn−2. Therefore γ2(Wn−2) ≤ γ2(Wn−vn−2vn−1−vn−1vn−vnv2)−2.
Now we get γ2(Wn− vn−2vn−1− vn−1vn− vnv2) ≥ γ2(Wn−2)+2 = ⌊(n− 1)/3⌋+3

= ⌊(n+2)/3⌋+2 > ⌊(n+1)/3⌋+1 = γ2(Wn). Therefore b′2(Wn) = 3 if n = 3k+2.

Now we investigate the non-isolating 2-bondage in complete bipartite graphs.

Remark 12 Let p and q be positive integers such that p ≤ q. Then

b′2(Kp,q) =


3 if p = q = 3;

5 if p = q = 4;

p− 1 otherwise.

Proof. Let E(Kp,q) = {aibj : 1 ≤ i ≤ p and 1 ≤ j ≤ q}. If p = 1, then obviously
b′2(Kp,q) = 0 = p − 1 as removing an edge gives us an isolated vertex. Now
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assume that p = 2. By Observation 7 we have γ2(K2,q) = 2. Let us observe
that γ2(K2,q − a1b1) = 3 as the vertex b1 has to belong to every 2DS of the
graph K2,q − a1b1. Thus b′2(K2,q) = 1 = p− 1.
Now let us assume that p = 3. By Observation 7 we have γ2(K3,q) = 3. Let

us observe that removing one edge does not increase the 2-domination number.
This implies that b′2(K3,q) = 0 or b′2(K3,q) ≥ 2. If q = 3, then it is easy to verify
that removing any two edges does not increase the 2-domination number. This
implies that b′2(K3,3) = 0 or b′2(K3,q) ≥ 3. Let us observe that γ2(K3,3 − a1b1

−a1b2 − a2b1) = 4 > 3 = γ2(K3,3). Therefore b′2(K3,3) = 3. Now assume that
q ≥ 4. We have γ2(K3,q − a1b1− a2b1) = 4 as the vertex b1 has to belong to every
2DS of the graph K3,q − a1b1 − a2b1. Thus b′2(K3,q) = 2 if q ≥ 4.
Now assume that p ≥ 4. By Observation 7 we have γ2(Kp,q) = 4. If q = 4,

then it is not difficult to verify that removing any four edges does not increase
the 2-domination number. This implies that b′2(K4,4) = 0 or b′2(K4,4) ≥ 5. We
have γ2(K4,4− a1b1− a1b2− a1b3− a2b1− a3b1) = 5 as the vertices a1 and b1 have
to belong to every 2DS of the graph K4,4− a1b1− a1b2− a1b3− a2b1− a3b1. Thus
b′2(K4,4) = 5. Now assume that q ≥ 5. Let us observe that removing any p − 2

edges does not increase the 2-domination number. This implies that b′2(Kp,q) = 0

or b′2(Kp,q) ≥ p − 1. We have γ2(Kp,q − a1b1 − a2b1 − . . . − ap−1b1) = 5 as the
vertex b1 has to belong to every 2DS of the graph Kp,q−a1b1−a2b1− . . .−ap−1b1.
Therefore b′2(Kp,q) = p− 1 if p ≥ 4 and q ≥ 5.

A paired dominating set of a graph G is a dominating set of vertices whose in-
duced subgraph has a perfect matching. The paired domination number of G, de-
noted by γp(G), is the minimum cardinality of a paired dominating set of G. The
paired bondage number, denoted by bp(G), is the minimum cardinality among
all sets of edges E ′ ⊆ E such that δ(G − E ′) ≥ 1 and γp(G − E ′) > γp(G). If
for every E ′ ⊆ E, either γp(G − E ′) = γp(G) or δ(G − E ′) = 0, then we define
bp(G) = 0, and we say that G is a γp-strongly stable graph. Raczek [11] observed
that if H ⊆ G, then bp(H) ≤ bp(G). Let us observe that no inequality of such
type is true for the non-isolating 2-bondage. Consider the complete bipartite
graphs K3,3, K3,5, and K4,5. Of course, K3,3 ⊆ K3,5 ⊆ K4,5. Using Remark 12 we
get b′2(K3,3) = 3 > 2 = b′2(K3,5) < 3 = b′2(K4,5).
The authors of [4] proved that the bondage number of any tree is either one or

two. Let us observe that for every non-negative integer there exists a tree having
such non-isolating 2-bondage number. For positive integers k consider trees Tk
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of the form presented in Figure 1. It is not difficult to verify that b′2(Tk) = k− 1.

Figure 1: A tree Tk having 5k + 1 vertices

Hartnell and Rall [5] characterized all trees with bondage number equaling
two. We characterize all trees with the non-isolating 2-bondage number equaling
zero, that is, all γ2-non-isolatingly strongly stable trees.
We have the following property of γ2-non-isolatingly strongly stable trees.

Lemma 13 Let T be a tree with b′2(T ) = 0, and let x be a vertex of T which is
neither a leaf nor a support vertex. Then γ2(T ) = γ2(T − x) + 1.

Proof. The neighbors of x we denote by y1, y2, . . . , yk. Let Ti mean the com-
ponent of T − x which contains the vertex yi. Let E0 = {xyi : 3 ≤ i ≤ k},
E1 = E0 ∪ {xy2}, and E2 = E0 ∪ {xy1}. Since b′2(T ) = 0, we have γ2(T )

= γ2(T − E0) = γ2(T − E1) = γ2(T − E2). By T ′
i we denote the component of

T − Ei which contains the vertex x. For i = 1, 2, let D′
i be any γ2(T

′
i )-set. By

Observation 1 we have x ∈ D′
i. It is easy to observe that D

′
1 ∪ D′

2 is a 2DS of
the tree T ′

0. Thus γ2(T
′
0) ≤ γ2(T

′
1) + γ2(T

′
2) − 1. Now let D1 be any γ2(T1)-set.

Of course, D1 ∪ {x} is a 2DS of the tree T ′
1. Thus γ2(T

′
1) ≤ γ2(T1) + 1. Suppose

that γ2(T ′
1) < γ2(T1) + 1. Now we get γ2(T ) = γ2(T − E0) = γ2(T

′
0) + γ2(T3)

+γ2(T4) + . . . + γ2(Tk) ≤ γ2(T
′
1) + γ2(T

′
2) − 1 + γ2(T3) + γ2(T4) + . . . + γ2(Tk)

< γ2(T1)+γ2(T
′
2)+γ2(T3)+γ2(T4)+ . . .+γ2(Tk) = γ2(T −E2) = γ2(T ), a contra-

diction. Therefore γ2(T ′
1) = γ2(T1)+1. Now we get γ2(T ) = γ2(T −E1) = γ2(T

′
1)

+γ2(T2)+γ2(T3)+ . . .+γ2(Tk) = γ2(T1)+γ2(T2)+ . . .+γ2(Tk)+1 = γ2(T−x)+1.

We have the following sufficient condition for that a subtree of a γ2-non-
isolatingly strongly stable tree is also γ2-non-isolatingly strongly stable.
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Lemma 14 Let T be a γ2-non-isolatingly strongly stable tree. Assume that T ′

̸= K1 is a subtree of T such that T −T ′ has no isolated vertices. Then b′2(T
′) = 0.

Proof. Let E1 mean the minimum subset of the set of edges of T such that T ′ is
a component of T −E1. Now let E ′ be a subset of the set of edges of T ′ such that
δ(T ′−E ′) ≥ 1. The assumption b′2(T ) = 0 implies that γ2(T −E1−E ′) = γ2(T ).
We have T − E1 − E ′ = T ′ − E ′ ∪ (T − T ′), and consequently, γ2(T − E1 − E ′)

= γ2(T
′−E ′)+γ2(T−T ′). Now we get γ2(T ′−E ′) = γ2(T−E1−E ′)−γ2(T−T ′)

= γ2(T )− γ2(T ) + γ2(T
′) = γ2(T

′). This implies that b′2(T
′) = 0.

Now we prove that attaching a path P3 by joining it through the support
vertex increases the 2-domination number of any graph by two.

Lemma 15 Let G be a graph, and let H obtained from G by attaching a path P3

by joining the support vertex to any vertex of G. Then γ2(H) = γ2(G) + 2.

Proof. Let v1v2v3 mean the attached path. Let D′ be any γ2(G)-set. It is easy to
see that D′∪{v1, v3} is a 2DS of the graph H. Thus γ2(H) ≤ γ2(G)+2. Now let
us observe that there exists a γ2(H)-set that does not contain the vertex v2. Let
D be such a set. By Observation 1 we have v1, v3 ∈ D. Observe that D \ {v1, v3}
is a 2DS of the graph G. Therefore γ2(G) ≤ γ2(H) − 2. This implies that
γ2(H) = γ2(G) + 2.

Now we need to define trees G1 and G2, see Figure 2. The tree G1 is a starK1,3

and the tree G2 is a double star with five vertices.

u

a

b c

G1 G2

u

d e
f

g

Figure 2: The trees G1 and G2

For the purpose of characterizing all γ2-non-isolatingly strongly stable trees,
that is, all trees T such that for every E ′ ⊆ E, either γ2(T − E ′) = γ2(T )
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or δ(T − E ′) = 0, we introduce a family T of trees T = Tk that can be obtained
as follows. Let T1 ∈ {P1, P2, P3}. If k is a positive integer, then Tk+1 can be
obtained recursively from Tk by one of the following operations.

• Operation O1: Attach a vertex by joining it to a strong support vertex
of Tk.

• Operation O2: Attach a path P3 by joining the support vertex to a leaf of
Tk ̸= P3 the neighbor of which has degree at most two.

• Operation O3: Attach a path P3 by joining the support vertex to a vertex
of Tk which is not a leaf.

• Operation O4: Let x mean a vertex of Tk adjacent to a tree G1 through the
vertex u. Remove that tree G1 and attach a tree G2 by joining the vertex u
to the vertex x.

• Operation O5: Attach a path P3 by joining the support vertex to a leaf
of Tk the neighbor of which is adjacent to at least three leaves.

Now we characterize all γ2-non-isolatingly strongly stable trees.

Theorem 16 Let T be a tree. Then b′2(T ) = 0 if and only if T ∈ T .

Proof. Let T be a tree of the family T . We use the induction on the number k
of operations performed to construct the tree T . If T = P1, then obviously
b′2(T ) = 0. If T = P2, then also b′2(T ) = 0 as removing the edge gives us isolated
vertices. Similarly, b′2(P3) = 0. Let k ≥ 2 be an integer. Assume that the result
is true for every tree T ′ = Tk of the family T constructed by k − 1 operations.
Let T = Tk+1 be a tree of the family T constructed by k operations.
First assume that T is obtained from T ′ by operation O1. Let x mean the

attached vertex, and let y mean its neighbor. Let D be any γ2(T )-set. By
Observation 1 we have x ∈ D. Let us observe that D \{x} is a 2DS of the tree T ′

as the vertex y has at least two neighbors inD\{x}. Therefore γ2(T ′) ≤ γ2(T )−1.
Now let E ′ be a subset of the set of edges of T such that δ(T − E ′) ≥ 1. Since
x is a leaf of T , we have xy /∈ E ′. The assumption b′2(T

′) = 0 implies that
γ2(T

′ − E ′) = γ2(T
′). Let D′ be any γ2(T

′ − E ′)-set. Of course, D′ ∪ {x} is
a 2DS of T − E ′. Thus γ2(T − E ′) ≤ γ2(T

′ − E ′) + 1. Now we get γ2(T − E ′)

≤ γ2(T
′−E ′)+1 = γ2(T

′)+1 ≤ γ2(T ). On the other hand, by Observation 2 we
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have γ2(T−E ′) ≥ γ2(T ). This implies that γ2(T−E ′) = γ2(T ), and consequently,
b′2(T ) = 0.
Now assume that T is obtained from T ′ by operation O2. The leaf to which

is attached P3 we denote by x. Let y mean the neighbor of x. The attached path
we denote by v1v2v3. If dT (y) = 1, then T ′ is a path P2. It is not difficult to
verify that b′2(T ) = 0. Now assume that dT (y) = 2. The neighbor of y other than
x we denote by z. Since T ′ ̸= P3, we have dT ′(z) ≥ 2. Let t mean a neighbor of
z other than y. By Lemma 15 we have γ2(T ) = γ2(T

′) + 2. Let E ′ be a subset of
the set of edges of T such that δ(T −E ′) ≥ 1. Since v1 and v3 are leaves of T , we
have v1v2, v2v3 /∈ E ′. If xv2 ∈ E ′, then γ2(T − E ′) = γ2(P3 ∪ T ′ − (E ′ \ {xv2}))
= γ2(T

′ − (E ′ \ {xv2})) + γ2(P3) = γ2(T
′) + 2 = γ2(T ). Now assume that

xv2 /∈ E ′. If xy /∈ E ′, then using Lemma 15 we get γ2(T −E ′) = γ2(T
′ −E ′) + 2

= γ2(T
′)+2 = γ2(T ). Now assume that xy ∈ E ′. By T ′

y we denote the component
of T ′ − (E ′ \ {xy}) which contains the vertex y. Let us observe that T ′

y ̸= P3.
Suppose that T ′

y = P3. Let E ′′ = E ′ \ {xy, zt} and E ′′′ = E ′′ ∪ {yz}. Since
b′2(T

′) = 0, we have γ2(T ′−E ′′) = γ2(T
′) and γ2(T ′−E ′′′) = γ2(T

′). This implies
that γ2(T ′−E ′′) = γ2(T

′−E ′′′). LetD′′′ be any γ2(T ′−E ′′′)-set. By Observation 1
we have x, y, z ∈ D′′′. Let us observe that D′′′ \ {y} is a 2DS of T ′ − E ′′.
Consequently, γ2(T ′−E ′′) ≤ γ2(T

′−E ′′′)−1, a contradiction. Therefore T ′
y ̸= P3.

Since b′2(T
′) = 0, we have γ2(T ′ − (E ′ \ {xy}) − yz) = γ2(T

′). Let D′ be any
γ2(T

′− (E ′ \{xy})−yz)-set. By Observation 1 we have x, y ∈ D′. Let us observe
thatD′∪{v1, v3} is a 2DS of T−E ′. Thus γ2(T−E ′) ≤ γ2(T

′−(E ′\{xy})−yz)+2.
We get γ2(T − E ′) ≤ γ2(T

′ − (E ′ \ {xy}) − yz) + 2 = γ2(T
′) + 2 = γ2(T ). Now

we conclude that γ2(T − E ′) = γ2(T ). This implies that b′2(T ) = 0.
Now assume that T is obtained from T ′ by operation O3. The vertex to which

is attached P3 we denote by x. Let v1v2v3 mean the attached path. Let E ′ be
a subset of the set of edges of T such that δ(T − E ′) ≥ 1. If xv2 ∈ E ′, then
similarly as when considering the previous operation we get γ2(T −E ′) ≤ γ2(T ).
Now assume that xv2 /∈ E ′. If the component of T−E ′ which contains the vertex x
is not a star K1,3, then similarly as when considering the previous operation we
get γ2(T−E ′) ≤ γ2(T ). Now assume that the component of T−E ′ which contains
the vertex x is a star K1,3. Let us observe that b′2(T

′ − x) = 0. Suppose that
b′2(T

′−x) > 0. This implies that there is a component of T ′−x, say Ti, such that
b′2(Ti) > 0. Since x is not a leaf of T ′, the graph T ′ − Ti has no isolated vertices.
By Lemma 14 we have b′2(Ti) = 0, a contradiction. Therefore b′2(T

′ − x) = 0.
This implies that γ2(T ′ − x − (E ′ ∩ E(T ′ − x))) = γ2(T

′ − x). Let D′ be any
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γ2(T
′ − x − (E ′ ∩ E(T ′ − x)))-set. It is easy to observe that D′ ∪ {x, v1, v3}

is a 2DS of T − E ′. Thus γ2(T − E ′) ≤ γ2(T
′ − x − (E ′ ∩ E(T ′ − x))) + 3.

Using Lemmas 13 and 15 we get γ2(T −E ′) ≤ γ2(T
′ − x− (E ′ ∩E(T ′ − x))) + 3

= γ2(T
′−x)+3 = γ2(T

′)+2 = γ2(T ). Now we conclude that γ2(T −E ′) = γ2(T ),
and consequently, b′2(T ) = 0.
Now assume that T is obtained from T ′ by operation O4. Let us observe

that there exists a γ2(T )-set that contains the vertex u. Let D be such a set.
By Observation 1 we have d, e, g ∈ D. The set D is minimal, thus f /∈ D. Let
us observe that D ∪ {b, c} \ {d, e, g} is a 2DS of the tree T ′. Therefore γ2(T ′)

≤ γ2(T )−1. Now let E ′ be a subset of the set of edges of T such that δ(T−E ′) ≥ 1.
Since d, e, and g are leaves of T , we have ud, ue, fg /∈ E ′. First assume that
ux ∈ E ′. The assumption b′2(T

′) = 0 implies that γ2(T ′− (E ′ ∩E(T ′))) = γ2(T
′).

We have γ2(G1) = 3 and γ2(G2) = 4. Now we get γ2(T − E ′) = γ2(T
′ − (E ′

∩E(T ′))) − γ2(G1) + γ2(G2) = γ2(T
′) − 3 + 4 = γ2(T

′) + 1 ≤ γ2(T ). Now
assume that ux /∈ E ′. First assume that x is a leaf of T ′ − (E ′ ∩ E(T ′)). Since
b′2(T

′) = 0, we have γ2(T ′ − (E ′ ∩ E(T ′))) = γ2(T
′). Let us observe that there

exists a γ2(T ′−(E ′∩E(T ′)))-set that contains the vertex u. Let D′ be such a set.
By Observation 1 we have b, c, x ∈ D′. The set D′ is minimal, thus a /∈ D′. Let
us observe that D′ \ {u, b, c} ∪ {d, e, f, g} is a 2DS of T − E ′. Thus γ2(T − E ′)

≤ γ2(T
′ − (E ′ ∩E(T ′))) + 1. Now we get γ2(T −E ′) ≤ γ2(T

′ − (E ′ ∩E(T ′))) + 1

= γ2(T
′) + 1 ≤ γ2(T ). Now assume that x is not a leaf of T ′ − (E ′ ∩ E(T ′)).

Since b′2(T
′) = 0, we have γ2(T ′ − (E ′ ∩ E(T ′)) − ux) = γ2(T

′). Let D′ be any
γ2(T

′− (E ′∩E(T ′))−ux)-set. By Observation 1 we have b, c, u ∈ D′. The set D′

is minimal, thus a /∈ D′. Let us observe that now also D′ \{u, b, c}∪{d, e, f, g} is
a 2DS of T −E ′. Thus γ2(T −E ′) ≤ γ2(T

′ − (E ′ ∩E(T ′))− ux) + 1. Now we get
γ2(T −E ′) ≤ γ2(T

′ − (E ′ ∩E(T ′))− ux) + 1 = γ2(T
′) + 1 ≤ γ2(T ). We conclude

that γ2(T − E ′) = γ2(T ), and consequently, b′2(T ) = 0.
Now assume that T is obtained from T ′ by operation O5. The leaf to which

is attached P3 we denote by x. Let y mean the neighbor of x. The attached
path we denote by v1v2v3. Let E ′ be a subset of the set of edges of T such that
δ(T − E ′) ≥ 1. If xv2 ∈ E ′, then similarly as when considering the operation O2

we get γ2(T − E ′) ≤ γ2(T ). Now assume that xv2 /∈ E ′. If the component of
T − E ′ which contains the vertex x is not a star K1,3, then similarly as when
considering the operation O2 we get γ2(T − E ′) ≤ γ2(T ). Now assume that the
component of T −E ′ which contains the vertex x is a star K1,3. Since b′2(T

′) = 0,
we have γ2(T ′ − (E ′ \ {xy})) = γ2(T

′). Let D′ be any γ2(T
′ − (E ′ \ {xy}))-
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set. By Observation 1 we have x ∈ D′. Let us observe that D′ ∪ {v1, v3} is
a 2DS of T −E ′ as the vertex y is adjacent to at least two leaves in T −E ′. Thus
γ2(T−E ′) ≤ γ2(T

′−(E ′\{xy}))+2. Using Lemma 15 we get γ2(T− E ′) ≤ γ2(T
′

−(E ′\{xy}))+2 = γ2(T
′)+2 = γ2(T ). Now we conclude that γ2(T−E ′) = γ2(T ).

Consequently, b′2(T ) = 0.
Now assume that T is a γ2-non-isolatingly strongly stable tree. Let n mean

the number of vertices of the tree T . We proceed by induction on this number.
If diam(T ) = 0, then T = P1 ∈ T . If diam(T ) = 1, then T = P2 ∈ T . If
diam(T ) = 2, then T is a star. If T = P3, then T ∈ T . If T is a star different
from P3, then it can be obtained from P3 by a proper number of operations O1.
Thus T ∈ T . Now let us assume that diam(T ) = 3. Thus T is a double star. Let
a and b mean the support vertices of T . Without loss of generality we assume
that dT (a) ≤ dT (b). If T = P4, then by Remark 9 we have b′2(T ) = 1 ̸= 0. Now
assume that T is a double star different from P4. First assume that dT (a) = 1. If
dT (b) = 2, then the tree T can be obtained from P2 by operationO2. Thus T ∈ T .
If dT (b) ≥ 3, then the tree T can be obtained from P2 by first, operation O2,
and then a proper number of operations O1 performed on the strong support
vertex. Thus T ∈ T . Now assume that dT (a) ≥ 2. The tree T can be obtained
from P3 by first, operation O3 performed on the support vertex, and then possibly
proper numbers of operations O1 performed on the support vertices. Thus T ∈ T .
Now assume that diam(T ) ≥ 4. Thus the order of the tree T is an integer

n ≥ 5. The result we obtain by the induction on the number n. Assume that the
lemma is true for every tree T ′ of order n′ < n.
First assume that some support vertex of T , say x, is adjacent to at least three

leaves. Let y mean a leaf adjacent to x. Let T ′ = T −y. Let D′ be any γ2(T ′)-set.
Of course, D′ ∪ {y} is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T

′) + 1. Now let E ′

be a subset of the set of edges of T ′ such that δ(T ′ − E ′) ≥ 1. Since b′2(T ) = 0,
we have γ2(T −E ′) = γ2(T ). Let D be any γ2(T −E ′)-set. By Observation 1 we
have y ∈ D. Let us observe that D \ {y} is a 2DS of T ′ − E ′ as the vertex y is
adjacent to at least two leaves in T ′−E ′. Therefore γ2(T ′−E ′) ≤ γ2(T −E ′)−1.
Now we get γ2(T ′ − E ′) ≤ γ2(T − E ′) − 1 = γ2(T ) − 1 ≤ γ2(T

′). On the
other hand, by Observation 2 we have γ2(T ′ − E ′) ≥ γ2(T

′). This implies that
γ2(T

′ − E ′) = γ2(T
′), and consequently, b′2(T

′) = 0. By the inductive hypothesis
we have T ′ ∈ T . The tree T can obtained from T ′ by operation O1. Thus T ∈ T .
Henceforth, we can assume that every support vertex of T is adjacent to at most
two leaves.
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We now root T at a vertex r of maximum eccentricity diam(T ). Let t be a leaf
at maximum distance from r, v be the parent of t, u be the parent of v, and w
be the parent of u in the rooted tree. By Tx let us denote the subtree induced by
a vertex x and its descendants in the rooted tree T .
First assume that dT (v) = 2. Assume that among the descendants of u

there is a support vertex, say x, different from v. It suffices to consider only
the possibilities when x is adjacent to one or two leaves. First assume that x is
adjacent to two leaves. Let T ′ = T − Tx. Lemma 14 implies that b′2(T

′) = 0. By
the inductive hypothesis we have T ′ ∈ T . The tree T can be obtained from T ′

by operation O3. Thus T ∈ T .
Now assume that x is adjacent to exactly one leaf. Let T ′ = T − Tv. Let

us observe that there exists a γ2(T
′)-set that contains the vertex u. Let D′

be such a set. It is easy to see that D′ ∪ {t} is a 2DS of the tree T . Thus
γ2(T ) ≤ γ2(T

′) + 1. We have T − uv = T ′ ∪ P2. Now we get γ2(T − uv)

= γ2(T
′ ∪ P2) = γ2(T

′) + γ2(P2) = γ2(T
′) + 2 ≥ γ2(T ) + 1 > γ2(T ). Therefore

b′2(T ) = 1, a contradiction.
Now assume that every descendant of u excluding v a leaf. First assume

that u is adjacent to two leaves, say x and y. Let T ′ be a tree obtained from
T − Tu by attaching a tree G1 by joining the vertex u to the vertex w. Let
us observe that there exists a γ2(T ′)-set that contains the vertex u. Let D′ be
such a set. By Observation 1 we have b, c ∈ D′. The set D′ is minimal, thus
a /∈ D′. Let us observe that D′ \ {b, c} ∪ {t, x, y} is a 2DS of the tree T . Thus
γ2(T ) ≤ γ2(T

′) + 1. Now let E ′ be a subset of the set of edges of T ′ such
that δ(T ′ − E ′) ≥ 1. Since b and c are leaves of T ′, we have ab, ac /∈ E ′. The
assumption b′2(T ) = 0 implies that γ2(T − (E ′ ∩ E(T ))) = γ2(T ). Let us observe
that there exists a γ2(T − (E ′ ∩E(T )))-set that contains the vertex u. Let D be
such a set. By Observation 1 we have t, x, y ∈ D. The set D is minimal, thus
v /∈ D. Let us observe that D ∪ {b, c} \ {t, x, y} is a 2DS of T ′ − E ′. Therefore
γ2(T

′ − E ′) ≤ γ2(T − (E ′ ∩ E(T ))) − 1. Now we get γ2(T ′ − E ′) ≤ γ2(T − (E ′

∩E(T ))) − 1 = γ2(T ) − 1 ≤ γ2(T
′). We conclude that γ2(T ′ − E ′) = γ2(T

′),
and consequently, b′2(T

′) = 0. By the inductive hypothesis we have T ′ ∈ T . The
tree T can be obtained from T ′ by operation O4. Thus T ∈ T .
Now assume that u is adjacent to exactly one leaf, say x. Let E ′ = {wu, uv}

and T ′ = T−Tu. Let D′ be any γ2(T ′)-set. It is easy to observe that D′∪{u, t, x}
is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(T

′)+ 3. We have T −E ′ = T ′ ∪P2 ∪P2.
Now we get γ2(T − E ′) = γ2(T

′ ∪ P2 ∪ P2) = γ2(T
′) + 2γ2(P2) = γ2(T

′) + 4
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≥ γ2(T ) + 1 > γ2(T ). This implies that b′2(T ) ∈ {1, 2}, a contradiction.
Now assume that dT (u) = 2. Let T ′ = T − Tv. Let D′ be any γ2(T

′)-set.
By Observation 1 we have u ∈ D′. It is easy to see that D′ ∪ {t} is a 2DS of
the tree T . Thus γ2(T ) ≤ γ2(T

′) + 1. We have T − uv = T ′ ∪ P2. Now we get
γ2(T − uv) = γ2(T

′ ∪ P2) = γ2(T
′) + γ2(P2) = γ2(T

′) + 2 ≥ γ2(T ) + 1 > γ2(T ).
Therefore b′2(T ) = 1, a contradiction.
Now assume that dT (v) = 3. The leaf adjacent to v and different from t we

denote by a. Assume that dT (u) ≥ 3. Let T ′ = T − Tv. Lemma 14 implies that
b′2(T

′) = 0. By the inductive hypothesis we have T ′ ∈ T . The tree T can be
obtained from T ′ by operation O3. Thus T ∈ T .
Now assume that dT (u) = 2. First assume that w is adjacent to two leaves.

Let T ′ = T −Tv. Lemma 14 implies that b′2(T
′) = 0. By the inductive hypothesis

we have T ′ ∈ T . The tree T can be obtained from T ′ by operation O5. Thus
T ∈ T .
Now assume that w is adjacent to exactly one leaf, say x. Let G′ be a graph

obtained from T by removing all edges incident to w excluding wx. Let D′ be
any γ2(G

′)-set. By Observation 1 we have u,w, x ∈ D′. Let us observe that
D′ \ {w} is a 2DS of the tree T . Thus γ2(T ) ≤ γ2(G

′)− 1. Therefore b′2(T ) > 0,
a contradiction.
Now assume that there is a descendant of w, say k, such that the distance

of w to the most distant vertex of Tk is three. It suffices to consider only the
possibility when Tk is isomorphic to Tu. The descendant of k we denote by l,
and the leaves adjacent to l we denote by m and p. Let G′ be a graph obtained
from T by removing all edges incident to w excluding wu. Let us observe that
there exists a γ2(G′)-set that contains the vertex u. Let D′ be such a set. By
Observation 1 we have w, k ∈ D′. Let us observe that D′ \ {w} is a 2DS of the
tree T . Thus γ2(T ) ≤ γ2(G

′)− 1. This implies that b′2(T ) > 0, a contradiction.
Now assume that there is a descendant of w, say k, such that the distance of w

to the most distant vertex of Tk is two. It suffices to consider only the possibilities
when k is adjacent to one or two leaves. First assume that k is adjacent to two
leaves. Let T ′ = T − Tk. Lemma 14 implies that b′2(T

′) = 0. By the inductive
hypothesis we have T ′ ∈ T . The tree T can be obtained from T ′ by operation O3.
Thus T ∈ T .
Now assume that k is adjacent to exactly one leaf. Let T ′ = T −Tk. Similarly

as when Tk is isomorphic to Tu we conclude that b′2(T ) > 0, a contradiction.
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Now assume that dT (w) = 2. Let T ′ = T − Tv. Lemma 14 implies that
b′2(T

′) = 0. By the inductive hypothesis we have T ′ ∈ T . The tree T can be
obtained from T ′ by operation O2. Thus T ∈ T .
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