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Abstract

Let G = (V,E) be a bipartite graph with partite sets X and Y . Two vertices of X are X-adjacent

if they have a common neighbor in Y , and they are X-independent otherwise. A subset D ⊆ X is an

X-outer-independent dominating set of G if every vertex of X \D has an X-neighbor in D, and all vertices
of X \ D are pairwise X-independent. The X-outer-independent domination number of G, denoted by

γoi

X (G), is the minimum cardinality of an X-outer-independent dominating set of G. We prove several

properties and bounds on the number γoi

X (G).
Keywords: X-dominating set; Y -dominating set; X-independent set, X-outer-independent dominating

set.
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Given a graph G, we can construct a bipartite graph G∗ which represents G. Similarly, for any problem, say
P , on an arbitrary graph G, there is a corresponding problem Q on a bipartite graph G∗ such that a solution
for Q provides a solution for P . The so called bipartite theory of graphs was introduced by Hedetniemi and
Laskar [1, 2]. They also defined the concepts of X-domination and Y -domination. Bipartite domination was
further studied for example in [5, 6]. We initiate the study of X-outer-independent domination.
Let G = (V,E) be a graph. The number of vertices of G we denote by n, thus |V (G)| = n. By the

neighborhood of a vertex v of G we mean the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. We say that a vertex is
isolated if it has no neighbors, while it is universal if it is adjacent to all other vertices. The degree of a vertex
v, denoted by dG(v), is the cardinality of its neighborhood. The minimum degree among all vertices of G we
denote by δ(G). Let uv be an edge of G. By subdividing the edge uv we mean removing it, and adding a new
vertex, say x, along with two new edges ux and xv. We say that a subset of V (G) is independent if there is
no edge between any two vertices of this set. The independence number of a graph G, denoted by α(G), is the
maximum cardinality of an independent subset of the set of vertices of G. The clique number of G, denoted
by ω(G), is the number of vertices of a greatest complete graph which is a subgraph of G.
A subset D ⊆ V (G) is a dominating set of G if every vertex of V (G) \ D has a neighbor in D. The

domination number of G, denoted by γ(G), is the minimum cardinality of a dominating set of G. For a
comprehensive survey of domination in graphs, see [3, 4].
A graph G = (V,E) is bipartite if its set of vertices can be partitioned into two subsets X and Y such that

for every edge uv ∈ E, either u ∈ X and v ∈ Y , or u ∈ Y and v ∈ X (that is, every edge joins a vertex of X
with a vertex of Y , or equivalently, no edge joins two vertices of X or two vertices of Y ).
Let G = (X,Y,E) denote a bipartite graph with partite sets X and Y . Let G∗ denote the graph obtained

from G by removing all leaves and isolated vertices of Y . Let Y ∗ = Y ∩ V (G∗).
For bipartite graphs G without isolated vertices in Y , a subset D of X is a Y -dominating set if every vertex

of Y has a neighbor in D. The minimum cardinality of a Y -dominating set of G is called the Y -domination
number of G, and is denoted by γY (G).
We say that two vertices ofX areX-adjacent if they have a common neighbor in Y . By theX-neighborhood

of a vertex v of X we mean the set NX(v) = {u ∈ X : u and v are X-adjacent}. The X-degree of v, denoted
by dX(v), is the cardinality of the set NX(v). The minimum X-degree is denoted by δX(G).
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A subset D ⊆ X is an X-dominating set of G if every vertex of X \ D has an X-neighbor in D. The
minimum cardinality of an X-dominating set of G is called the X-domination number of G, and is denoted
by γX(G).
A subset D of X is an X-independent set if no two vertices of D are X-adjacent. The maximum cardinality

of an X-independent set of G is called the X-independence number of G, and is denoted by αX(G).
A subset D of X is called an X-clique if every two vertices of D are X-adjacent. The maximum cardinality

of an X-clique in G is called the X-clique number of G, and is denoted by ωX(G).
Let D ⊆ X and let v ∈ D. A vertex u ∈ X \D is called a private X-neighbor of v with respect to D if v

is the only X-neighbor of u in D.
A subset D ⊆ X is an X-outer-independent dominating set, abbreviated XOIDS, of G if every vertex

of X \ D has an X-neighbor in D, and the set X \ D is X-independent. The minimum cardinality of an
X-outer-independent dominating set of G is called the X-outer-independent domination number of G, and is
denoted by γoi

X (G).
We begin with the following three observations.

Observation 1 In any bipartite graph without isolated vertices in X, every Y -dominating set is an X-
dominating set.

Observation 2 Let G be a bipartite graph without leaves and isolated vertices in Y . If S is an X-independent
set of G, then X \ S is a Y -dominating set of G.

Observation 3 For every bipartite graph G without leaves and isolated vertices in Y we have γoi
X (G) ≥ γY (G).

We now give a necessary and sufficient condition for that the X-outer-independent domination and the
Y -domination numbers of a bipartite graph are equal.

Proposition 4 For a bipartite graph G we have γoi
X (G) = γY (G) if and only if there exists a γY (G)-set D

such that X \D is X-independent.

Proof. Let D be a γY (G)-set such that X \ D is X-independent. Observation 1 implies that D is an X-
dominating set of G. Therefore D is a XOIDS of the graph G, and consequently, γoi

X (G) ≤ |D| = γY (G). On
the other hand, by Observation 3 we have γoi

X (G) ≥ γY (G).
Now assume that for some bipartite graph G we have γoi

X (G) = γY (G). LetD be any γoi
X (G)-set. SinceX\D

is X-independent, Observation 2 implies that D is a Y -dominating set of G. We have |D| = γoi
X (G) = γY (G).

Thus D is a γY (G)-set.

We now show that the X-outer-independent domination number of any bipartite graph is at least its
X-clique number minus one.

Proposition 5 For every bipartite graph G we have γoi
X (G) ≥ ωX(G)− 1.

Proof. Let D be a γoi
X (G)-set. Let A be an X-clique of G of cardinality ωX(G). Observe that at most one

vertex of A does not belong to D, as the set X \D is X-independent. Therefore γoi
X (G) ≥ |A| − 1. We now

get γoi
X (G) ≥ |A| − 1 = ωX(G)− 1.

We now prove that the X-outer-independent domination number of a bipartite graph is not less than the
minimum X-degree.

Proposition 6 For every graph G we have γoi
X (G) ≥ δX(G).

Proof. Let D be a γoi
X (G)-set. If D = X, then obviously the result is true. Now assume that D 6= X. Let x

be a vertex of X \D. Since the set X \D is X-independent, all vertices, which are X-adjacent to x, belong
to the set D. Therefore |D| ≥ dX(x). We now get γoi

X (G) = |D| ≥ dX(x) ≥ δX(G).

Observation 7 For every bipartite graph G we have 1 ≤ γoi
X (G) ≤ |X|.
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We now characterize all bipartite graphs, which attain the lower bound from the previous observation. For
this purpose we introduce a family G of bipartite graphs G such that G∗ is connected, and for some vertex
x ∈ X, in the graph G∗ − x all vertices of Y ∗ are leaves.

Theorem 8 Let G be a bipartite graph. We have γoi
X (G) = 1 if and only if G ∈ G.

Proof. First, let us observe that γoi
X (G) = γoi

X (G∗). Thus it suffices to prove that γoi
X (G∗) = 1 if and only if

G belongs to the family G.
If G ∈ G, then let x be a vertex of X such that in the graph G∗−x all vertices of Y ∗ are leaves. If G∗ = K1,

then obviously γoi
X (G∗) = 1. Now assume that G∗ 6= K1. The graph G

∗ is connected, thus every vertex of X
has a neighbor in Y . Moreover, every vertex of Y ∗ is adjacent to x in G∗ as no vertex of Y ∗ is a leaf in G∗.
This implies that all vertices of X \ {x} are X-adjacent to x in G∗. All vertices of Y ∗ are leaves in the graph
G∗−x, thus no two vertices of X are X-adjacent, that is, the set X \{x} is X-independent. We now conclude
that {x} is a XOIDS of G∗, implying that γoi

X (G∗) = 1.
Now assume that γoi

X (G∗) = 1. Let {x} be a γoi
X (G∗)-set. The vertex x is X-adjacent to all other vertices

of X, thus the graph G∗ is connected. Since {x} is a XOIDS, the set X \ {x} is X-independent. This implies
that in the graph G∗ − x all vertices of Y ∗ are leaves. Therefore G ∈ G.

We now characterize all bipartite graphs for which the X-outer-independent domination number equals
the cardinality of X.

Theorem 9 Let G be a bipartite graph. We have γoi
X (G) = |X| if and only if no two vertices of X are

X-adjacent.

Proof. If the X-neighborhoods of all vertices of X are empty, then obviously γoi
X (G) = |X|. Now assume that

some vertex of X, say x, has an X-neighbor. Observe that X \ {x} is a XOIDS of the graph G. Therefore
γoi
X (G) < |X|.

We now characterize all connected bipartite graphs for which the X-outer-independent domination number
is one less than the cardinality of X.

Theorem 10 Let G be a connected bipartite graph with |X| ≥ 2. We have γoi
X (G) = |X| − 1 if and only if

every two vertices of X are X-adjacent.

Proof. If all vertices of X are pairwise X-adjacent, then let x be one of them. Observe that X \ {x}
is a XOIDS of the graph G. Thus γoi

X (G) ≤ |X| − 1. On the other hand, using Proposition 5 we get
γoi
X (G) ≥ ωX(G)− 1 = |X| − 1.
If some two vertices of X, say v1 and v2, are not X-adjacent, then let us observe that X \ {v1, v2} is a

XOIDS of the graph G. Therefore γoi
X (G) ≤ |X| − 2 < |X| − 1.

Corollary 11 For every integer p ≥ 2 we have γoi
X (Kp,q) = p− 1.

We now give a lower bound on the X-outer-independent domination number of any bipartite graph.

Theorem 12 For every bipartite graph G with |X| = p, |Y | = q and |E| = m we have γoi
X (G) ≥ p − 1/2 −

√

pq −m+ 1/4.

Proof. Let D be a γoi
X (G)-set. The definition of an X-outer-independent dominating set implies that for

every x ∈ X \D there exists y ∈ Y such that NG(y) ⊆ D ∪ {x}. Thus each vertex of X \D is not adjacent to
p− γoi

X (G)− 1 vertices of Y . We now get

m ≤ pq − (p− γoi
X (G)) · (p− γoi

X (G)− 1)
= pq − ((p− γoi

X (G))2 − (p− γoi
X (G)))

= pq + 1/4− ((p− γoi
X (G))2 − (p− γoi

X (G)) + 1/4)
= pq + 1/4− (p− γoi

X (G)− 1/2)2.
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This implies that

p− γoi
X (G)−

1

2
≤

√

pq −m+
1

4
,

and consequently,

γoi
X (G) ≥ p−

1

2
−

√

pq −m+
1

4
.

Let us observe that the bound from the previous theorem is tight. For a complete bipartite graph Kp,q

with p ≥ 2 we have p− 1/2−
√

pq −m+ 1/4 = p− 1/2−
√

pq − pq + 1/4 = p− 1 = γoi
X (Kp,q).

We have the following characterization of X-outer-independent dominating sets, which are minimal.

Theorem 13 Let D be a XOIDS of a bipartite graph G. Then D is minimal if and only if for every vertex of
D, say u, at least one of the following conditions is satisfied:

(i) there is a vertex v ∈ X \D such that v is a private X-neighbor of u with respect to D;

(ii) (X \D) ∪ {u} is not an X-independent set of G.

Proof. If D is minimal, then D \ {u} is not a XOIDS of G. Thus D \ {u} is not an X-dominating set of G or
(X \D) ∪ {u} is not an X-independent set of G. If D \ {u} is not an X-dominating set of G, then there is a
vertex v ∈ X \ (D \ {u}), which is not X-adjacent to any vertex of D \ {u}, but is X-adjacent to a vertex of
D, namely u. Therefore we get (i). If (X \D) ∪ {u} is not an X-independent set of G, then we get (ii).
Now assume that at least one of the conditions (i) and (ii) holds, and suppose that D is not minimal. Then

there exists a vertex u ∈ D such that D \ {u} is a XOIDS of G. Equivalently, D \ {u} is an X-dominating set
of G, and the set (X \D) ∪ {u} is X-independent. Thus u has no private X-neighbors with respect to D, so
the condition (i) does not hold. Since (X \D) ∪ {u} is an X-independent set of G, we get a contradiction to
(ii).

We now define the complement of a bipartite graph G, denoted by Ḡ = (X,Y,E1), as follows:

(i) no two vertices in X are adjacent;

(ii) no two vertices in Y are adjacent;

(iii) x ∈ X and y ∈ Y are adjacent in Ḡ if and only if they are not adjacent in G.

We shall now characterize the graphs G for which γoi
X (G) + γoi

X (Ḡ) = 2p − 2. For this purpose we define
a family F of bipartite graphs such that |X| ≥ 2, all vertices of X are pairwise X-adjacent, and for any two
vertices u, v ∈ X there is a vertex y ∈ Y such that neither u nor v is adjacent to y.

Theorem 14 Let G be a connected bipartite graph such that its complement Ḡ is also connected. We have
γoi
X (G) + γoi

X (Ḡ) = 2p− 2 if and only if G ∈ F .

Proof. If γoi
X (G) + γoi

X (Ḡ) = 2p − 2, then observe that γoi
X (G) = γoi

X (Ḡ) = p − 1 as the graphs G and Ḡ
are connected. Theorem 10 implies that all vertices of X are pairwise X-adjacent in both graphs G and Ḡ.
Let u, v ∈ X. Since every two vertices of X are pairwise X-adjacent in Ḡ, there is y ∈ Y such that u and v
are adjacent to y in Ḡ, so they are not adjacent to y in G. We now conclude that G ∈ F . The converse is
straightforward.

Given an arbitrary graph G = (V,E), we can construct a bipartite graph V E(G) in a way given in [1, 2].

The bipartite graph V E(G): For any graph G = (V,E), let V E(G) be a bipartite graph (V,E, F ), where
E = E(G) and F = {ue : e = uv ∈ E(G)}. The graph V E(G) is isomorphic to the graph S(G) (the subdivision
graph of G), that is, the graph obtained from G by subdividing each one of its edges exactly once.
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Figure 1: A graph G and its bipartite construction V E(G)

We now define the outer-independent domination number of a graph.
A subset D of V (G) is an outer-independent dominating set of G if every vertex of V (G) \ D has an

X-neighbor in D, and the set V (G) \ D is is independent. The outer-independent domination number of a
graph G, denoted by γoi(G), is the minimum cardinality of an outer-independent dominating set of G.

Theorem 15 For every graph G we have γoi(G) = γoi
X (V E(G)) = |V (G)| − α(G).

Proof. Let D be a γoi
X (V E(G))-set, where V E(G) = (X,Y,E). The set X \D is X-independent and every

vertex of X \D has an X-neighbor in D. Equivalently, in the graph G, the set V (G) \D is independent and
every vertex of V (G) \D has a neighbor in D. Therefore D is an outer-independent dominating set of G. We
now get γoi(G) ≤ |D| = γoi

X (V E(G)).
Now let S be a γoi(G)-set. Thus V (G) \ S is an independent set, and every vertex of V (G) \ S has a

neighbor in S. This implies that in the graph V E(G), the set X \ S is X-independent and every vertex of
X \S has an X-neighbor in S. Thus S is an X-outer-independent dominating set of the graph V E(G). Hence,
γoi
X (V E(G)) ≤ |S| = γoi(G).
We now conclude that γoi(G) = γoi

X (V E(G)). It is not very difficult to obtain the equality γoi(G) =
|V (G)| − α(G).

A subset D of E(G) is called an edge outer-independent dominating set of G if for every edge e ∈ E \D
there is an edge f ∈ D such that e and f are adjacent, and the set E \ D is edge-independent. The edge
outer-independent domination number of a graph G, denoted by γoi

e (G), is the minimum cardinality of an
edge outer-independent dominating set of G.
Similarly as for the outer-independent domination, we obtain the following result.

Theorem 16 Let G be a graph, and let H be a bipartite graph obtained from EV (G) by swapping its partite
sets. We have γoi

e (G) = γoi
X (H).

The advantage of the concept ofX-outer-independent dominating set is that, if it is applied to the vertex set
V of the bipartite graph V E, then we get an outer-independent dominating set, and when applied to the edge
set E, we get an edge outer-independent dominating set. Thus with a single parameter X-outer-independent
domination number, we can study the outer-independent domination and the edge outer-independent domi-
nation numbers of a graph.
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