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Abstract

We determine all graphs whose line graphs (middle graphs, total graphs,
respectively) are homogeneously representable interval graphs.
Keywords: line graph, middle graph, total graph, interval graph.
AMS Subject Classification: 05C10, 05C75, 05C76.

A graph G = (V,E) is said to be an interval graph if it is possible to assign to
each vertex of G a closed interval on the real line such that two distinct vertices
of G are adjacent if and only if the corresponding intervals have a non-empty
intersection, that is, if there exists a collection I = {Iv : v ∈ V (G)} of closed
intervals on the real line such that G is isomorphic to the intersection graph Ω(I)
of I. In such a situation, the collection I is called an interval representation
of G. Without loss of generality we may assume that an interval representation
consists of closed, nonempty, finite intervals in which all end points of the intervals
are distinct. The first characterization of interval graphs has been proved by
Lekkerkerker and Boland [3]. In some applications of interval graphs it is desirable
to have an interval graph with as few different interval representations as possible.
In [4] a class of interval graphs whose representations are far from being unique
is demonstrated.
Let I = {I1, . . . , Ip} be a set of intervals of the real line, where Ii = [ai, bi]

for i = 1, 2, . . . , p. An interval Ii is called an end interval of the set I if ai ≤ aj
for all j, or bi ≥ bj for all j. A graph G is called a homogeneously representable
interval graph (shortly, an HRI graph) if for every vertex v of G there exists
an interval representation of G in which the interval representing v is an end in-
terval. Homogeneously representable interval graphs were characterized in terms
of forbidden subgraphs by Skrien and Gimbel [4].
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Theorem 1 (Skrien and Gimbel) A graph G is an HRI graph if and only if
it does not contain any of the graphs P4, C4, C5 or G1 shown in Figure 1 as

an induced subgraph.

P4 P5 C4 C5 G1 G2

Figure 1

The line graph of a graph G, denoted by L(G), is the intersection graph
Ω(E(G)) of the family E(G) = {{u, v} : uv ∈ E(G)}, that is, L(G) is the graph
whose vertices are in one-to-one correspondence with the edges of G, and two
vertices of L(G) are adjacent if and only if the corresponding edges of G are
adjacent. Whitney [5] proved that K1,3, K3 is the only pair of non-isomorphic
connected graphs with isomorphic line graphs. In the next two theorems we char-
acterize all graphs G whose line graphs L(G) are homogeneously representable
interval graphs.

Theorem 2 The line graph L(G) of a graph G is an HRI graph if and only if G
contains no P5, C4, C5 or G2 (shown in Figure 1) as a subgraph.

Proof. Note that P4 = L(P5), C4 = L(C4), C5 = L(C5), and G1 = L(G2). Now,
Whitney’s theorem implies that if at least one of the graphs P4, C4, C5, and G1

is an induced subgraph of the line graph L(G), then at least one of the graphs
P5, C4, C5, and G2 is a subgraph of G. From this and from Theorem 1 it follows
that if L(G) is not an HRI graph, then at least one of the graphs P5, C4, C5,
and G2 is a subgraph of G. The opposite implication is straightforward.

Theorem 3 The line graph L(G) of a graph G is an HRI graph if and only

if every connected component of G is a subgraph of any of the graphs H1, H2,

and H3 given in Figure 2.

Proof. Since L(G) is an HRI graph if and only if every connected component
of L(G) is an HRI graph, without loss of generality we may assume that G is
connected and different from K1. First note that if G is a subgraph of any of the
graphs given in Figure 2, then it contains no P5, C4, C5 or G2 as a subgraph, and
therefore L(G) is an HRI graph, by Theorem 2.
Now assume that L(G) is an HRI graph. According to Theorem 2, the graphG

does not contain P5, C4, C5 or G2 as a subgraph. Let P = (v0, v1, . . . , vd) be
a longest path in G. Since P5 is not a subgraph of G and G 6= K1, we have 1 ≤ d
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≤ 4. If d = 1, then G = K2 and G is a subgraph of Hi. If d = 2, then G is
a star or a complete graph on three vertices. Notice that G is a subgraph of
the graphs H1 and H2. If d = 3 and P has no chord in G, then it follows from
the choice of P that the sets NG(v1) and NG(v2) are disjoint, and every vertex
of NG(v1) ∪ NG(v2) \ {v1, v2} is a leaf in G. Thus G is a double star, and it
is a subgraph of H2. Now assume that d = 3 and P has a chord in G. From
the absence of C4 in G, it follows that either v0v2 or v1v3 is a chord of P in G.
Without loss of generality, assume that v0v2 is a chord of P in G. Since P is
a longest path in G, we have NG(v0) = {v1, v2}, NG(v1) = {v0, v2}, and each
vertex of NG(v2) \ {v0, v1} is a leaf in G. Therefore G can be obtained from K3

by attaching a positive number of leaves to exactly one vertex of K3. Certainly,
G is a subgraph of H2. Now assume that d = 4. From the absence of C4 and C5

in G and from the choice of P , it easily follows that NG(v0) \ {v1} ⊆ {v2} and
NG(v4) \ {v3} ⊆ {v2}. In addition, NG(v2) \ {v1, v3} ⊆ {v0, v4} as otherwise G2

would be a subgraph of G. Again from the choice of P and from the absence of
C4 in G, it follows that NG(v1) = {v0, v2} if v0v2 is a chord of P in G. Similarly,
NG(v3) = {v2, v4} if v2v4 is a chord of P in G. This implies that G = H3 if
both v0v2 and v2v4 are chords of P in G. If v0v2 is a chord of P and v2v4 is not
a chord of P , then the choice of P implies that the vertices belonging to NG(v3)
are independent, and G is a subgraph of H1. Similarly, G is a subgraph of H1 if
v2v4 is a chord and v0v2 is not a chord of P in G. Finally assume that neither v0v2
nor v2v4 is a chord of P in G. Then from the choice of P and from the absence of
C4 in G, it follows that the sets NG(v1) \ {v2} and NG(v3) \ {v2} are disjoint and
each of them consists of independent vertices. Therefore G is a subgraph of H2.

The middle graph of a graph G, denoted by M(G), is the intersection graph
Ω(F) of the family F = {{v} : v ∈ V (G)} ∪ {{v, u} : vu ∈ E(G)}. It is known
that M(G) is isomorphic to the line graph L(G ◦K1) (see [1]), where G ◦K1 is a
graph obtained by taking the graph G and |V (G)| copies of K1 and then joining
the i-th vertex of G to the i-th copy of K1.
The following result follows from Theorems 1 and 2.

Theorem 4 The middle graph M(G) of a graph G is an HRI graph if and only
if every connected component of G is isomorphic to K1 or K2.
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Proof. If every component of G is isomorphic toK1 orK2, then every component
of M(G) is K1 = M(K1) or K1,2 = M(K2). Thus by Theorem 1, M(G) is an
HRI graph. Now assume that M(G) is an HRI graph. Suppose that G has
a component different from K1 and K2. Then K1,2 is a subgraph of G and
therefore G2 = K1,2 ◦K1 is a subgraph of G ◦K1. Consequently, by Theorem 2,
the middle graph M(G) = L(G ◦K1) is not an HRI graph, a contradiction.

The total graph of a graph G, denoted by T (G), is the intersection graph
Ω(F ) of the family F = E(G) ∪ V E(G) = {{v, u} : vu ∈ E(G)} ∪ {{v} ∪ {{v, u}
: u ∈ NG(v)} : v ∈ V (G)}, that is, T (G) is the graph for which there exists a one-
to-one correspondence between its vertices and the vertices and edges of G such
that two vertices of T (G) are adjacent if and only if the corresponding elements
in G are adjacent or incident. This concept was originated by Behzad [2]. It is
interesting to note that the graphs G and L(G) are induced subgraphs of the
total graph T (G).
We now determine all graphs whose total graphs are HRI graphs.

Theorem 5 The total graph T (G) of a graph G is an HRI graph if and only if
every connected component of G is isomorphic to K1, K2 or K1,2.

Proof. The sufficiency follows immediately from Theorem 1. Now assume that
T (G) is an HRI graph. It is easy to see that if T (G) is an interval graph, then
every connected component of G is triangle-free. From this and from the absence
of G1 in T (G) (see Theorem 1) it follows that P3 is not a subgraph of G. Thus
every component of G is isomorphic to one of the graphs K1, K2, or K1,2.
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