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Abstract

An edge e ∈ E(G) dominates a vertex v ∈ V (G) if e is incident with v
or e is incident with a vertex adjacent to v. An edge-vertex dominating set
of a graph G is a set D of edges of G such that every vertex of G is edge-
vertex dominated by an edge of D. The edge-vertex domination number
of a graph G is the minimum cardinality of an edge-vertex dominating
set of G. A subset D ⊆ V (G) is a total dominating set of G if every
vertex of G has a neighbor in D. The total domination number of G is
the minimum cardinality of a total dominating set of G. We characterize
all trees with total domination number equal to edge-vertex domination
number plus one.
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1 Introduction

Let G = (V,E) be a graph. By the neighborhood of a vertex v of G we mean
the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v, denoted
by dG(v), is the cardinality of its neighborhood. By a leaf we mean a vertex of
degree one, while a support vertex is a vertex adjacent to a leaf. We say that
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a support vertex is strong (weak, respectively) if it is adjacent to at least two
leaves (exactly one leaf, respectively). The edge incident with a leaf is called
an end edge. The path on n vertices we denote by Pn. Let T be a tree, and let
v be a vertex of T . We say that v is adjacent to a path Pn if there is a neighbor
of v, say x, such that one of the components of T − vx is a path Pn containing x
as a leaf.
A subset D ⊆ V (G) is a dominating set of G if every vertex of V (G) \ D

has a neighbor in D. The domination number of a graph G, denoted by γ(G),
is the minimum cardinality of a dominating set of G. A subset D ⊆ V (G) is
a total dominating set, abbreviated TDS, of G if every vertex of G has a neighbor
in D. The total domination number of a graph G, denoted by γt(G), is the
minimum cardinality of a total dominating set of G. For a comprehensive survey
of domination in graphs, see [2].
An edge e ∈ E(G) dominates a vertex v ∈ V (G) if e is incident with v

or e is incident with a vertex adjacent to v. A subset D ⊆ E(G) is an edge-
vertex dominating set, abbreviated EVDS, of a graph G if every vertex of G is
edge-vertex dominated by an edge of D. The edge-vertex domination number
of a graph G, denoted by γev(G), is the minimum cardinality of an edge-vertex
dominating set of G. Edge-vertex domination in graphs was introduced in [4],
and was further studied in [3].
Trees with equal domination and total domination numbers were characterized

in [1]. We characterize all trees with total domination number equal to edge-
vertex domination number plus one.

2 Results

Since the one-vertex graph does not have a total dominating set or an edge-vertex
dominating set, in this paper, we consider only trees on at least two vertices.
We begin with the following three straightforward observations.

Observation 1 Every support vertex of a graph G is in every TDS of G.

Observation 2 For every connected graph G of diameter at least three there
exists a γt(G)-set that contains no leaf.

Observation 3 For every connected graph G of diameter at least three there
exists a γev(T )-set that contains no end edge.

We now prove that the total domination number of any tree is greater than
its edge-vertex domination number.

Lemma 4 For every tree T we have γt(T ) > γev(T ).
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Proof. If diam(T ) ≤ 3, then we get γt(T ) = 2 > 1 = γev(T ). Now assume that
diam(T ) ≥ 4. Thus the order n of the tree T is at least five. We prove the result
by the induction on the number n. Assume that the theorem is true for every
tree T ′ of order n′ < n.
First assume that some support vertex of T , say x, is strong. Let y be a leaf

adjacent to x. Let T ′ = T − y. Let D′ be a γev(T ′)-set. It is easy to see that
D′ is an EVDS of the tree T . Thus γev(T ) ≤ γev(T

′). Obviously, γt(T ′) ≤ γt(T ).
We now get γt(T ) ≥ γt(T

′) > γev(T
′) ≥ γev(T ). Henceforth, we can assume that

every support vertex of T is weak.
We now root T at a vertex r of maximum eccentricity diam(T ). Let t be a leaf

at maximum distance from r, v be the parent of t, u be the parent of v, and w
be the parent of u in the rooted tree. By Tx we denote the subtree induced by
a vertex x and its descendants in the rooted tree T .
Assume that some child of u, say x, is a leaf. Let T ′ = T − x. Let D′ be

a γev(T ′)-set that contains no end edge. The vertex t has to be dominated, thus
uv ∈ D. It is easy to see thatD′ is an EVDS of the tree T . Thus γev(T ) ≤ γev(T

′).
Obviously, γt(T ′) ≤ γt(T ). We now get γt(T ) ≥ γt(T

′) > γev(T
′) ≥ γev(T ).

Now assume that among the children of u there is a support vertex, say x,
other than v. Let T ′ = T − Tv. Let D′ be a γev(T ′)-set. It is easy to see that
D′ ∪ {uv} is an EVDS of the tree T . Thus γev(T ) ≤ γev(T

′) + 1. Now let D be
a γt(T )-set that contains no leaf. By Observation 1 we have v, x ∈ D. Let us
observe that D \ {v} is a TDS of the tree T ′. Therefore γt(T ′) ≤ γt(T )− 1. We
now get γt(T ) ≥ γt(T

′) + 1 > γev(T
′) + 1 ≥ γev(T ).

Now assume that dT (u) = 2. Let T ′ = T − Tu. Let D′ be a γev(T ′)-set. It is
easy to see that D′ ∪ {uv} is an EVDS of the tree T . Thus γev(T ) ≤ γev(T

′) + 1.
Now let D be a γt(T )-set that contains no leaf. By Observation 1 we have v ∈ D.
The vertex v has to be dominated, thus u ∈ D. Let k be a neighbor of w other
than u. If k ∈ D, then D\{u, v} is a TDS of the tree T ′. Now assume that k /∈ D.
It is easy to observe that D∪{k}\{u, v} is a TDS of the tree T ′. We now conclude
that γt(T ′) ≤ γt(T )− 1. We get γt(T ) ≥ γt(T

′) + 1 > γev(T
′) + 1 ≥ γev(T ).

We characterize all trees with total domination number equal to edge-vertex
domination number plus one. For this purpose we introduce a family T of trees
T = Tk that can be obtained as follows. Let T1 ∈ {P2, P3}. If k is a positive
integer, then Tk+1 can be obtained recursively from Tk by one of the following
operations.

• Operation O1: Attach a vertex by joining it to any support vertex of Tk.

• Operation O2: Attach a vertex or a path P2 by joining one of its vertices
to a vertex of Tk adjacent to a path P2.

We now prove that for every tree of the family T , the total domination number
is equal to the edge-vertex domination number plus one.
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Lemma 5 If T ∈ T , then γt(T ) = γev(T ) + 1.

Proof. We use induction on the number k of operations performed to construct
the tree T . If T ∈ {P2, P3}, then obviously γt(T ) = 2 = γev(T ) + 1. Let k
be a positive integer. Assume that the result is true for every T ′ = Tk of the
family T constructed by k−1 operations. Let T = Tk+1 be a tree of the family T
constructed by k operations.
First assume that T is obtained from T ′ by operation O1. Let D′ be a γt(T ′)-

set. It is easy to see that D′ is a TDS of the tree T . Thus γt(T ) ≤ γt(T
′). Obvi-

ously, γev(T ′) ≤ γev(T ). We now get γt(T ) ≤ γt(T
′) = γev(T

′) + 1 ≤ γev(T ) + 1.
On the other hand, by Lemma 4 we have γt(T ) ≥ γev(T ) + 1. This implies that
γt(T ) = γev(T ) + 1.
Now assume that T is obtained from T ′ by operation O2. The vertex to which

is joined a new vertex we denote by x. Let y be a support vertex of degree two
adjacent to x. The neighbor of y other than x we denote by z. If we attach
a vertex, then let D′ be a γt(T ′)-set that contains no leaf. The vertex y has to
be dominated, thus x ∈ D′. It is easy to see that D′ is a TDS of the tree T .
Thus γt(T ) ≤ γt(T

′). Obviously, γev(T ′) ≤ γev(T ). We now get γt(T ) ≤ γt(T
′)

= γev(T
′) + 1 ≤ γev(T )+1. Now assume that we attach a path P2, say v1v2. Let

v1 be joined to x. Let D′ be a γt(T ′)-set that contains no leaf. The vertex y has
to be dominated, thus x ∈ D′. It is easy to observe that D′ ∪ {v1} is a TDS of
the tree T . Thus γt(T ) ≤ γt(T

′) + 1. Now let D be a γev(T )-set that contains no
end edge. The vertices z and v2 have to be dominated, thus xy, xv1 ∈ D. Let us
observe that D\{xv1} is an EVDS of the tree T ′. Therefore γev(T ′) ≤ γev(T )−1.
We now get γt(T ) ≤ γt(T

′) + 1 = γev(T
′) + 2 ≤ γev(T ) + 1. We conclude that

γt(T ) = γev(T ) + 1.

We now prove that if the total domination number of a tree is equal to its
edge-vertex domination number plus one, then the tree belongs to the family T .

Lemma 6 Let T be a tree. If γt(T ) = γev(T ) + 1, then T ∈ T .

Proof. If diam(T ) = 1, then T = P2 ∈ T . If diam(T ) = 2, then T is a star.
If T = P3, then T ∈ T . If T is a star different from P3, then it can be obtained
from P3 by an appropriate number of operations O1. Thus T ∈ T . Now assume
that diam(T ) ≥ 3. Thus the order n of the tree T is at least four. We prove the
result by induction on n. Assume that the result is true for every tree T ′ of order
n′ < n.
First assume that some support vertex of T , say x, is strong. Let y be a leaf

adjacent to x. Let T ′ = T − y. Let D′ be a γev(T ′)-set. It is easy to see that
D′ is an EVDS of the tree T . Thus γev(T ) ≤ γev(T

′). Obviously, γt(T ′) ≤ γt(T ).
We now get γt(T ′) ≤ γt(T ) = γev(T ) + 1 ≤ γev(T

′) + 1. On the other hand,
by Lemma 4 we have γt(T ′) ≥ γev(T

′)+1. This implies that γt(T ′) = γev(T
′)+1.

4



By inductive hypothesis we have T ′ ∈ T . The tree T can be obtained from T ′

by operation O1. Thus T ∈ T . Henceforth, we can assume that every support
vertex of T is weak.
We now root T at a vertex r of maximum eccentricity diam(T ). Let t be a leaf

at maximum distance from r, v be the parent of t, and u be the parent of v in the
rooted tree. If diam(T ) ≥ 4, then let w be the parent of u. If diam(T ) ≥ 5, then
let d be the parent of w. If diam(T ) ≥ 6, then let e be the parent of d. By Tx

we denote the subtree induced by a vertex x and its descendants in the rooted
tree T .
Assume that some child of u, say x, is a leaf. Let T ′ = T − x. Let D′ be

a γev(T ′)-set that contains no end edge. The vertex t has to be dominated, thus
uv ∈ D′. It is easy to see thatD′ is an EVDS of the tree T . Thus γev(T ) ≤ γev(T

′).
Obviously, γt(T ′) ≤ γt(T ). We now get γt(T ′) ≤ γt(T ) = γev(T )+1 ≤ γev(T

′)+1.
This implies that γt(T ′) = γev(T

′) + 1. By inductive hypothesis we have T ′ ∈ T .
The tree T can be obtained from T ′ by operation O2. Thus T ∈ T .
Now assume that among the children of u there is a support vertex, say x,

other than v. Let T ′ = T − Tv. Let D′ be a γev(T ′)-set. It is easy to see that
D′ ∪ {uv} is an EVDS of the tree T . Thus γev(T ) ≤ γev(T

′) + 1. Now let D
be a γt(T )-set that contains no leaf. By Observation 1 we have v, x ∈ D. Let
us observe that D \ {v} is a TDS of the tree T ′. Therefore γt(T ′) ≤ γt(T ) − 1.
We now get γt(T ′) ≤ γt(T ) − 1 = γev(T ) ≤ γev(T

′) + 1. This implies that
γt(T

′) = γev(T
′) + 1. By inductive hypothesis we have T ′ ∈ T . The tree T can

be obtained from T ′ by operation O2. Thus T ∈ T .
Now assume that dT (u) = 2. If dT (w) = 1, then T = P4. Let T ′ = P3 ∈ T .

The tree T can be obtained from T ′ by operation O2. Thus T ∈ T . Now assume
that dT (w) = 2. If dT (d) = 1, then T = P5. Let T ′ = P3 ∈ T . The tree T can be
obtained from T ′ by operation O2. Thus T ∈ T . Now assume that dT (d) ≥ 2.
Let T ′ = T − Tw. Let D′ be a γev(T ′)-set. It is easy to see that D′ ∪ {uv} is an
EVDS of the tree T . Thus γev(T ) ≤ γev(T

′) + 1. Now let us observe that there
exists a γt(T )-set that does not contain the vertices t and w. Let D be such a set.
By Observation 1 we have v ∈ D. The vertex v has to be dominated, thus u ∈ D.
Observe that D \ {u, v} is a TDS of the tree T ′. Therefore γt(T ′) ≤ γt(T ) − 2.
We now get γt(T ′) ≤ γt(T )− 2 = γev(T )− 1 ≤ γev(T

′) < γev(T
′) + 1.

Now assume that dT (w) ≥ 3. First assume that there is a child of w other
than u, say k, such that the distance of w to the most distant vertex of Tk is
three or two. It suffices to consider only the possibilities when Tk is a path P3

or P2, say klm or kl. Let T ′ = T − Tu. Let D′ be a γev(T ′)-set. It is easy to
see that D′ ∪ {uv} is an EVDS of the tree T . Thus γev(T ) ≤ γev(T

′) + 1. Now
let D be a γt(T )-set that contains no leaf. By Observation 1 we have v ∈ D.
The vertices v and l have to be dominated, thus u, k ∈ D. Let us observe
that D \ {u, v} is a TDS of T ′. Therefore γt(T ′) ≤ γt(T ) − 2. We now get
γt(T

′) ≤ γt(T )− 2 = γev(T )− 1 ≤ γev(T
′) < γev(T

′) + 1.
Now assume that some child of w, say x, is a leaf. We can assume that
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dT (w) = 3. First assume that some child of d, say k, is a leaf. Let T ′ = T − Tu.
Let D′ be a γev(T ′)-set. It is easy to see that D′∪{uv} is an EVDS of the tree T .
Thus γev(T ) ≤ γev(T

′) + 1. Now let D be a γt(T )-set that contains no leaf. By
Observation 1 we have v, d ∈ D. The vertex v has to be dominated, thus u ∈ D.
Let us observe thatD\{u, v} is a TDS of the tree T ′. Therefore γt(T ′) ≤ γt(T )−2.
We now get γt(T ′) ≤ γt(T )− 2 = γev(T )− 1 ≤ γev(T

′) < γev(T
′) + 1.

Now assume that some child of d other than w, say k, is not a leaf. It suffices
to consider the possibilities when Tk is isomorphic to Tw, or Tk is a path P2

or P3. Let T ′ = T − Tw. Let D′ be a γev(T
′)-set. It is easy to observe that

D′ ∪ {dw, uv} is an EVDS of the tree T . Thus γev(T ) ≤ γev(T
′) + 2. Now let

D be a γt(T )-set that contains no leaf. Let us observe that some child of k has
to be dominated by the vertex k. Therefore k ∈ D. By Observation 1 we have
v, w ∈ D. The vertex v has to be dominated, thus u ∈ D. Let us observe that
D \ {w, u, v} is a TDS of the tree T ′. Therefore γt(T ′) ≤ γt(T )− 3. We now get
γt(T

′) ≤ γt(T )− 3 = γev(T )− 2 ≤ γev(T
′) < γev(T

′) + 1.
Now assume that dT (d) = 2. If dT (e) = 1, then we get γt(T ) = 4 > 3

= γev(T ) + 1. Now assume that dT (e) ≥ 2. Let T ′ = T − Td. Let D′ be a
γev(T

′)-set. It is easy to observe that D′ ∪ {dw, uv} is an EVDS of the tree T .
Thus γev(T ) ≤ γev(T

′) + 2. Now let us observe that there exists a γt(T )-set that
does not contain the vertices t, x and d. Let D be such a set. By Observation 1
we have v, w ∈ D. The vertex v has to be dominated, thus u ∈ D. Observe that
D \ {w, u, v} is a TDS of the tree T ′. Therefore γt(T ′) ≤ γt(T )− 3. We now get
γt(T

′) ≤ γt(T )− 3 = γev(T )− 2 ≤ γev(T
′) < γev(T

′) + 1.

As an immediate consequence of Lemmas 5 and 6, we have the following char-
acterization of trees with total domination number equal to edge-vertex domina-
tion number plus one.

Theorem 7 Let T be a tree. Then γt(T ) = γev(T ) + 1 if and only if T ∈ T .
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