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Abstract

We initiate the study of outer-2-independent domination in graphs.
An outer-2-independent dominating set of a graph G is a set D of ver-
tices of G such that every vertex of V (G) \ D has a neighbor in D and
the maximum vertex degree of the subgraph induced by V (G) \ D is at
most one. The outer-2-independent domination number of a graph G is
the minimum cardinality of an outer-2-independent dominating set of G.
We show that if a graph has minimum degree at least two, then its outer-2-
independent domination number equals the number of vertices minus the 2-
independence number. Then we investigate the 2-outer-independent domi-
nation in graphs with minimum degree one. We also prove the Vizing-type
conjecture for outer-2-independent domination and disprove the Vizing-
type conjecture for outer-connected domination.
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1 Introduction

Let G = (V,E) be a graph. The number of vertices of G we denote by n and the
number of edges we denote by m, thus |V (G)| = n and |E(G)| = m. By the
complement of G, denoted by G, we mean a graph which has the same vertices
as G, and two vertices of G are adjacent if and only if they are not adjacent
in G. By the neighborhood of a vertex v of G we mean the set NG(v) = {u
∈ V (G) : uv ∈ E(G)}. The degree of a vertex v, denoted by dG(v), is the
cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while
a support vertex is a vertex adjacent to a leaf. The set of leaves of a graph G we
denote by L(G). Let δ(G) (∆(G), respectively) mean the minimum (maximum,
respectively) degree among all vertices of G. The complete graph on n vertices
we denote by Kn. The path (cycle, respectively) on n vertices we denote by Pn

(Cn, respectively). A wheel Wn, where n ≥ 4, is a graph with n vertices, formed
by connecting a vertex to all vertices of a cycle Cn−1. The distance between
two vertices of a graph is the number of edges in a shortest path connecting
them. The eccentricity of a vertex is the greatest distance between it and any
other vertex. The diameter of a graph G, denoted by diam(G), is the maximum
eccentricity among all vertices of G. By Kp,q we denote a complete bipartite
graph the partite sets of which have cardinalities p and q. Generally, let Kt1,t2,...,tk

denote the complete multipartite graph with vertex set S1 ∪ S2 ∪ . . . ∪ Sk, where
|Si| = ti for positive integers i ≤ k. By a star we mean the graph K1,m where
m ≥ 2. We say that a subset of V (G) is independent if there is no edge between
any two vertices of this set. Generally, for positive integers k, a subset S of
V (G) is k-independent if the maximum degree of the subgraph induced by the
vertices of S is at most k−1. The k-independence number of a graph G, denoted
by αk(G), is the maximum cardinality of a k-independent subset of the set of
vertices of G. The clique number of G, denoted by ω(G), is the number of vertices
of a greatest complete graph which is a subgraph ofG. By G∗ we denote the graph
obtained from G by removing all isolated vertices, leaves and support vertices.
The Cartesian product of graphs G andH, denoted by G�H, is a graph such that
V (G�H) = V (G) × V (H) and E(G�H) = {(u1, v1)(u2, v2) : u1 = u2 and v1v2
∈ E(H) or v1 = v2 and u1u2 ∈ E(G)}.
A subset D ⊆ V (G) is a dominating set of G if every vertex of V (G) \D has

a neighbor in D, while it is an outer-connected dominating set of G if additionally
either D = V (G) or G−D is connected. The domination (outer-connected dom-
ination, respectively) number of a graph G, denoted by γ(G) (γ̃c, respectively),
is the minimum cardinality of a dominating (outer-connected dominating, respec-
tively) set of G. Outer-connected domination was introduced by Cyman [1], and
further studied for example in [2, 4]. For a comprehensive survey of domination
in graphs, see [3].
A subset D ⊆ V (G) is an outer-2-independent dominating set, abbreviated

O2IDS, ofG ifD is dominating and∆(G−D) ≤ 1. The outer-2-independent dom-
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ination number of G, denoted by γ̃2i(G), is the minimum cardinality of an outer-
2-independent dominating set of G. An outer-2-independent dominating set of G
of minimum cardinality is called a γ̃2i(G)-set.
We initiate the study of outer-2-independent domination in graphs. We show

that if a graph has minimum degree at least two, then its outer-2-independent
domination number equals the number of vertices minus the 2-independence num-
ber. Then we investigate the outer-2-independent domination in graphs with min-
imum degree one. We find the outer-2-independent domination numbers for sev-
eral classes of graphs. Next we study the influence of removing or adding vertices
and edges. Then we prove some lower and upper bounds, and we characterize the
extremal graphs. We also give Nordhaus-Gaddum type inequalities. We prove
the Vizing-type conjecture for outer-2-independent domination. We also disprove
the Vizing-type conjecture for outer-connected domination.

2 General graphs

We begin with the following straightforward observation.

Observation 1 For every graph G, γ̃2i(G) ≥ γ(G).

Let us observe that for any non-negative integer there exists a graph such
that the difference between its outer-2-independent domination and domination
numbers equals that non-negative integer.

Observation 2 For every integer n ≥ 3, γ̃2i(Kn) = n− 2 = γ(Kn) + n− 3.

We now give the outer-2-independent domination numbers of paths and cycles.

Observation 3 For every integer n ≥ 3, γ̃2i(Pn) = γ̃2i(Cn) = ⌊(n+ 2)/3⌋.

We now give the outer-2-independent domination numbers of complete mul-
tipartite graphs.

Proposition 4 Let n1 ≤ n2 ≤ . . . ≤ nt (where t ≥ 3) be positive integers. We
have

γ̃2i(Kn1,n2,...,nt
) =





t−1∑
j=1

nj if nt ≥ 2;

t− 2 if nt = 1.

Proof. Let V1, V2, . . . , Vt be the partite sets of the graph Kn1,n2,...,nt
, where |Vi| =

ni. If nt = 1, then ni = 1 for 1 ≤ i ≤ t. Thus G is a complete graph Kt and
γ̃2i(G) = t− 2. Let nt ≥ 2. If one vertex from partite 1 to partite t− 1 is not in
an O2IDS then this vertex with the vertices of partite t induce a subgraph with
∆ ≥ 2. Thus all vertices from partite 1 to partite t − 1 must be in any O2IDS.
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Now if we say S consists of the vertices of 1 to t − 1 partite sets then S has

minimum cardinality. Thus γ̃2i(Kn1,n2,··· ,nt
) =

t−1∑
j=1

nj.

We have the following lower bound on the outer-2-independent domination
number of a graph in terms of its clique number.

Observation 5 For every graph G, γ̃2i(G) ≥ ω(G)− 2.

Let us observe that the above bound is tight. For n ≥ 3 we have γ̃2i(Kn) =
n− 2 = ω(Kn)− 2.
Now let us observe that for any non-negative integer there exists a graph

such that the difference between its outer-2-independent domination number and
clique number equals that non-negative integer.

Observation 6 For every positive integer k, γ̃2i(P3k) = ω(P3k) + k − 2.

We now prove that if a graph has no leaves and isolated vertices, then its
outer-2-independent domination number equals the number of vertices minus the
2-independence number.

Proposition 7 Let G be a graph. If δ(G) ≥ 2, then γ̃2i(G) = n− α2(G).

Proof. Let D be a maximum 2-independent set of G. Every vertex of D has
at most one neighbor in the set D. Since δ(G) ≥ 2, every vertex of D has
a neighbor in V (G) \ D. Let us observe that V (G) \ D is a dominating set
of the graph G. Consequently, it is an outer-2-independent dominating set of G.
Therefore γ̃2i(G) ≤ n−α2(G). On the other hand, we have α2(G) ≥ n− γ̃2i(G) as
the complement of every outer-2-independent dominating set is a 2-independent
set.

3 Graphs with minimum degree one

Throughout this section we only consider connected graphs with minimum degree
one.
We have the following relation between the outer-2-independent domination

number of a graph and the 2-independence number of the graph obtained from
it by removing all leaves and support vertices.

Lemma 8 For every graph G 6= K2 with l leaves, γ̃2i(G) = n− α2(G∗)− l.
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Proof. Let us observe that there exists a γ̃2i(G)-set that does not contain any
leaf. Let D be such a set. We have V (G) \ (D ∪ L(G)) ⊆ V (G∗). The set V (G)
\(D∪L(G)) is 2-independent, thus α2(G∗) ≥ |V (G)\(D∪L(G))| = n−γ̃2i(G)−l.
Now letD∗ be a maximum 2-independent set of the graph G∗. Let us observe that
in the graph G every vertex of D∗ has a neighbor in the set V (G) \ (D∗ ∪L(G)).
This implies that |V (G) \ (D∗ ∪L(G))| is an outer-2-independent dominating set
of the graph G. Therefore γ̃2i(G) ≤ |V (G) \ (D∗ ∪L(G))| = n−α2(G∗)− l. This
implies that γ̃2i(G) = n− α2(G∗)− l.

We have the following bounds on the outer-2-independent domination number
of a graph.

Observation 9 For every graph G, 1 ≤ γ̃2i(G) ≤ n.

We now characterize the graphs attaining the bounds from the previous ob-
servation.

Proposition 10 Let G be a graph. Then

(i) γ̃2i(G) = 1 if and only if G has a universal vertex v such that each compo-
nent of G− v is K1 or K2;

(ii) γ̃2i(G) = n if and only if G = Kn.

Proof. First assume that G has a universal vertex, say v, such that G−v consists
of only isolated vertices and paths on two vertices. Let us observe that {v} is
an outer-2-independent dominating set of the graph G, as the vertex v dominates
the whole graph, and the set V (G) \ {v} is 2-independent. Thus γ̃2i(G) = 1.
Now assume that G is a graph such that γ̃2i(G) = 1. Let v be a vertex that

forms an outer-2-independent dominating set of G. The vertex v is universal,
as all vertices of G are dominated by it. The set V (G) \ {v} is 2-independent,
thus G− v consists of isolated vertices and paths on two vertices.
Obviously, γ̃2i(Kn) = n. Now let G be any graph such that γ̃2i(G) = n.

Suppose that some two vertices of G, say x and y, are adjacent. Let us observe
that V (G) \ {x} is an O2IDS of the graph G. Therefore γ̃2i(G) ≤ n − 1, a
contradiction. This implies that G consists of isolated vertices.

Corollary 11 For every graph G with at least two vertices, γ̃2i(G) ≤ n− 1.
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3.1 Bounds

We have the following upper bound on the outer-2-independent domination num-
ber of a graph.

Proposition 12 For every graph G with s support vertices we have

γ̃2i(G) ≤
∆(G) · (n− l) + s

∆(G) + 1
.

Proof. By Lemma 8 we have γ̃2i(G) = n− α2(G∗)− l. We now get

α2(G∗) ≥ α(G∗) ≥ γ(G∗) ≥
|V (G∗)|

∆(G∗) + 1
≥

n− s− l

∆(G) + 1
.

We have the following upper bound on the outer-2-independent domination
number of a graph in terms of its diameter.

Proposition 13 If G is a graph of diameter d, then γ̃2i(G) ≤ n− ⌊2(d+ 1)/3⌋.

Proof. Let v0, v1, ..., vd be a diametrical path in G. If d ∈ {3k − 1, 3k}, then
let S = {v3i, v3i+2 : 0 ≤ i ≤ (d − 1)/3}. If d = 3k + 1, then let S = {v3i, v3i+2 :
0 ≤ i ≤ d/3−1}∪{vd}. Let us observe that V (G)\S is an O2IDS of the graph G.

The bound in the previous proposition is tight, as γ̃2i(Pn) = ⌊(n + 2)/3⌋ =
n− ⌊2n/3⌋ = n− ⌊2(d+ 1)/3⌋.
We have the following bounds on the outer-2-independent domination number

of a graph in terms of its order and size.

Proposition 14 For every graph G,

n− 2−
√
n(n− 3)− 2m+ 5 ≤ γ̃2i(G) ≤ n− 2 +

√
n(n− 3)− 2m+ 5.

Proof. Let D be a γ̃2i(G)-set. Let t denote the number of edges between the
vertices of D and the vertices of V (G) \D. Obviously, m ≤ (n− |D| − 1)/2+ t+
|E(G[D])|. Since G has at least one leaf, we have t ≤ |D| · (|V (G) \D| − 1) + 1.
Obviously, |E(G[D])| ≤ |D| · (|D| − 1)/2. Now simple calculations imply the
result.

We now study the influence of the removal of a vertex of a graph on its
outer-2-independent domination number.
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Proposition 15 Let G be a graph. For every vertex v of G, γ̃2i(G) − 1 ≤
γ̃2i(G− v) ≤ γ̃2i(G) + dG(v)− 1.

Proof. Let D be a γ̃2i(G)-set. If v 6∈ D, then observe that D is an O2IDS of
the graph G− v. Now assume that v ∈ D. Let us observe that D ∪NG(v) \ {v}
is an O2IDS of the graph G − v. Therefore γ̃2i(G − v) ≤ |D ∪ NG(v) \ {v}|
≤ |D \ {v}|+ |NG(v)| = γ̃2i(G) + dG(v)− 1.
Now let D′ be any γ̃2i(G− v)-set. It is easy to see that D′ ∪ {v} is an O2IDS

of the graph G. Thus γ̃2i(G) ≤ γ̃2i(G− v) + 1.

Let us observe that the bounds from the previous proposition are tight. For
the lower bound, let G = Kn, where n ≥ 4. We have γ̃2i(Kn) = n − 2 = n
−3 + 1 = γ̃2i(Kn−1) + 1 = γ̃2i(Kn − v) + 1. For the upper bound, let G be a star
K1,m. The central vertex we denote by v. We have G − v = mK1. We now get
γ̃2i(G− v) = γ̃2i(mK1) = m = 1 +m− 1 = γ̃2i(G) + dG(v)− 1.
We now study the influence of the removal of an edge of a graph on its outer-

2-independent domination number.

Proposition 16 Let G be a graph. For every edge e of G,

γ̃2i(G− e) ∈ {γ̃2i(G)− 1, γ̃2i(G), γ̃2i(G) + 1}.

Proof. Let D be a γ̃2i(G)-set, and let e = xy be an edge of G. If x, y /∈ D or
x, y ∈ D, then it is easy to observe that D is an O2IDS of the graph G− e. Now
assume that exactly one of those vertices, say x, belongs to the set D. Let us
observe that D ∪ {y} is an O2IDS of G− e. Thus γ̃2i(G− e) ≤ γ̃2i(G) + 1. Now
let D′ be a γ̃2i(G− e)-set. If some of the vertices x and y belongs to the set D′,
then D′ is an O2IDS of the graph G. If none of the vertices x and y belongs to
the set D′, then it is easy to observe that D′ ∪ {x} is an O2IDS of the graph G.
Therefore γ̃2i(G) ≤ γ̃2i(G− e) + 1.

Let us observe that all values from the previous proposition can be achieved.
For the lowest value, let G be a graph obtained fromK4 by removing an edge. Let
e be an edge of G such that G−e 6= C4. We have γ̃2i(G−e) = 1 = γ̃2i(G)−1. For
the middle value, let e be an edge of K3. We have γ̃2i(G− e) = 1 = γ̃2i(G). For
the highest value, let e be the edge of K2. We have γ̃2i(G− e) = 2 = γ̃2i(G) + 1.
Similarly, we have the following proposition concerning the influence of adding

an edge on the outer-2-independent domination number of a graph.

Proposition 17 Let G be a graph. If e /∈ E(G), then

γ̃2i(G+ e) ∈ {γ̃2i(G)− 1, γ̃2i(G), γ̃2i(G) + 1}.
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3.2 Nordhaus-Gaddum type inequalities

We now give Nordhaus-Gaddum type inequalities for the sum of the outer-2-
independent domination number of a graph and its complement.

Theorem 18 For every graph G, n− 2 ≤ γ̃2i(G) + γ̃2i(G) ≤ 2n, with equality in
the upper bound if and only if G = K1.

Proof. Obviously, γ̃2i(G) ≤ n and γ̃2i(G) ≤ n. Thus γ̃2i(G) + γ̃2i(G) ≤ 2n.
Now assume that γ̃2i(G) ≤ n − 3. Let D be a γ̃2i(G)-set. Let us observe that
for any triple of vertices of V (G) \ D, at least one of them is adjacent in the
graph G to both two remaining ones. Let D be a γ̃2i(G)-set. At most two
vertices of every triple of vertices of V (G) \D do not belong to the set D as its
complement is 2-independent. This implies that at most two vertices of V (G)\D
do not belong to the set D. Therefore |D| ≥ |V (G) \ D| − 2. We now get
γ̃2i(G) + γ̃2i(G) = |D|+ |D| ≥ |D|+ |V (G) \D| − 2 = n− 2.
Assume that γ̃2i(G) + γ̃2i(G) = 2n. Then γ̃2i(G) = γ̃2i(G) = n, and by

Proposition 10, G = G = Kn. This is only possible if n = 1, and so G = K1.

We also characterize graphs G such that γ̃2i(G) + γ̃2i(G) = 2n− 1.

Proposition 19 If G is a connected graph, then γ̃2i(G)+ γ̃2i(G) = 2n− 1 if and
only if G = K2.

Proof. We have γ̃2i(K2) + γ̃2i(K2) = 2 + 1 = 3 = 2n − 1. Now assume that for
some graph G we have γ̃2i(G) + γ̃2i(G) = 2n − 1. This implies that γ̃2i(G) = n
or γ̃2i(G) = n. Without loss of generality we assume that γ̃2i(G) = n. By
Proposition 10 we have G = Kn, and so G is a complete graph. Observation 2
implies that G = K2.

4 Cartesian product of graphs

In this section we investigate the outer-2-independent domination and outer-
connected domination for Cartesian product of graphs. We also solve Vizing-type
conjectures for those two variants of domination.

4.1 Outer-2-independent domination for Cartesian prod-
uct of graphs

First we consider the Cartesian product of two cycles.

Theorem 20 For any positive integers m and n, γ̃2i(Cm�Cn) = ⌈mn/2⌉.
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Proof. Proposition 7 implies that γ̃2i(Cm�Cn) = mn − α2(Cm�Cn). Let
V (Cm�Cn) = {vij : 1 ≤ i ≤ m and 1 ≤ j ≤ n}, where vij is the vertex in
row i and column j, and it is adjacent to vertices vi−1j, vi+1j , vij−1, vij+1 (where
m+1 for rows means 1, and n+1 for columns means 1). Let S be a maximum 2-
independent set of Cm�Cn. Let us observe that the graph G[S] has at most one of
edges vijvij+1, vijvij−1, vijvi−1j, vijvi+1j. Also, if two vertices vij and vij+1 belong to
the set S, then none of the vertices vi+1j, vi+1j+1, vi−1j, vi−1j+1, vij−1, vij+2 belongs
to S. First assume thatm or n is even. Without loss of generality we assume that
m = 2k. For each column, at most k vertices can be in S, thus |S| ≤ n·k = mn/2.
Let S = {v11, v31, . . . , vm−1 1, v22, v42, . . . , vm2, v13, v33, . . . , vm−1 3, . . . , v2n, v4n, . . . ,
vmn}. Let us observe that the set S is 2-independent. We have |S| = mn/2. This
implies that α2(S) = mn/2 = ⌊mn/2⌋. Now assume that both m and n are odd.
Let m = 2k+1 and n = 2l+1. Let us observe that for any two adjacent columns,
at most 2k + 1 vertices belong to the set S. Thus |S| ≤ ⌊(2k + 1)(2l + 1)/2⌋
= ⌊mn/2⌋. Let S = {v12, v14, · · · , v1 n−1, v21, v23, · · · , v2n, v32, v34, · · · , v3 n−1,
vm−1 1, vm−1 3, · · · , vm−1 n, vm2, vm4, · · · , vm n−1}. Let us observe that the set S
is 2-independent. We have |S| = (mn − 1)/2 = ⌊mn/2⌋. This implies that
α2(S) = ⌊mn/2⌋. We now get γ̃2i(Cm�Cn) = mn−α2(Cm�Cn) = mn−⌊mn/2⌋
= ⌈mn/2⌉.

Similarly we obtain the following results.

Theorem 21 For any positive integers m and n, γ̃2i(Pm�Cn) = ⌊mn/2⌋.

Theorem 22 For any positive integers m and n with m or n even we have
γ̃2i(Pm�Pn) = ⌊mn/2⌋. Also, if m,n ≤ 3, then γ̃2i(Pm�Pn) = ⌊mn/2⌋.

Theorem 23 Let m ≥ 3 and n ≥ 3 be positive odd integers. Then γ̃2i(Pm�Pn)
= ⌊mn/2⌋ − ⌊(n+ 1)/6⌋.

Proof. Let m = 2t + 1. If 3k − 1 ≤ n ≤ 3k + 3 for even positive integers k,
then ⌊(n + 1)/6⌋ = k/2. Thus without loss of generality we can assume that
n ∈ {3k − 1, 3k + 1, 3k + 3} for an even k ≥ 2.
Let n = 3k − 1 and let vij be the vertex in ith row and jth column of

Pm�Pn. The set {vij : i is odd, 1 ≤ i ≤ 2t+1 and j ∈ {1, 2, 4, 5, . . . , 3k− 2, 3k−
1}}

⋃
{vij : i is even, 2 ≤ i ≤ 2t and j ∈ {3, 6, . . . , 3k − 3}} is a maximum 2-

independent set of Pn�Pm. Therefore α
2(Pm�Pn) = (t + 1) · 2k + t(k − 1) =

t(3k−1)+2k and γ̃2i(Pm�Pn) = t(3k−1)+k−1. It is easy to see that t(3k−1)+
k − 1 = ⌊(2t+ 1)(3k − 1)/2⌋ − k/2. Thus γ̃2i(Pm�Pn) = ⌊mn/2⌋ − ⌊(n+ 1)/6⌋.
Let n = 3k+1. The set {vij : i is odd and j ∈ {1, 2, 4, 5, . . . , 3k−2, 3k−1, 3k+

1}}
⋃
{vij : i is even and j ∈ {3, 6, . . . , 3k − 3, 3k}} is a maximum 2-independent

set of Pn�Pm. Similar calculation shows that γ̃2i(Pm�Pn) = ⌊mn/2⌋−⌊(n+1)/6⌋.
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Let n = 3k + 3. The set {vij : i is odd and j ∈ {1, 2, 4, 5, . . . , 3k + 1, 3k +
2}}

⋃
{vij : i is even and j ∈ {3, 6, . . . , 3k, 3k + 3}} is a maximum 2-independent

set of Pn�Pm. Also it is easily seen that γ̃2i(Pm�Pn) = ⌊mn/2⌋−⌊(n+1)/6⌋.

We now consider the Cartesian product of a path and a complete graph.

Theorem 24 Let m and n ≥ 4 be positive integers. We have γ̃2i(Pm�Kn)
= m(n− 2).

Proof. Proposition 7 implies that γ̃2i(Pm�Kn) = mn − α2(Pm�Kn). Let
V (Pm�Kn) = {vij : 1 ≤ i ≤ m and 1 ≤ j ≤ n}, where vij is the vertex in
row i and column j. Let S be a maximum 2-independent set of the graph
Pm�Kn. Let us observe that S contains at most two vertices from every row.
Thus α2(Pm�Kn) ≤ 2m. Now let S consist of two first vertices of every odd
row and two last vertices of every even row. Let us observe that the set S is
2-independent. We have |S| = 2m. This implies that α2(Pm�Kn) = 2m. We
now get γ̃2i(Pm�Kn) = mn− α2(Pm�Kn) = mn− 2m = m(n− 2).

We now consider the Cartesian product of a cycle and a complete graph.

Theorem 25 Ifm is an odd integer, then γ̃2i(Cm�K4) = 2m+2 and γ̃2i(Cm�K5)
= 3m + 1. Now let m ≥ 4 and n ≥ 4 be any integers. We have γ̃2i(Cm�Kn) =
m(n− 2) if m is even or n ≥ 6.

Proof. Proposition 7 implies that γ̃2i(Cm�Kn) = mn−α2(Cm�Kn). Let V (Cm

�Kn) = {vij : 1 ≤ i ≤ m and 1 ≤ j ≤ n}, where vij is the vertex in row i and
column j. Let S be a maximum 2-independent set of the graph Cm�Kn. Let
us observe that S has at most 2m vertices. Thus α2(Cm�Kn) ≤ 2m. If m is
even, then let S consist of two first vertices of every odd column and two last
vertices of every even column. Let us observe that the set S is 2-independent.
Now assume that m is odd and n is at least six. Let S differ from the above
defined S only in that from the last column it contains the third and the fourth
vertex instead of the first two vertices. Let us observe that the set S is 2-
independent. We have |S| = 2m. This implies that α2(Cm�Kn) = 2m. We now
get γ̃2i(Cm�Kn) = mn− α2(Cm�Kn) = mn− 2m = m(n− 2).

4.2 Vizing-type conjecture for outer-2-independent dom-
ination

We now prove that the Vizing-type conjecture for the outer-2-independent dom-
ination is true.

Theorem 26 For any graphs G and H, γ̃2i(G�H) ≥ γ̃2i(G) · γ̃2i(H).
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Proof. We consider G�H in a matrix form, where we have |V (G)| rows H
and |V (H)| columns G. Proposition 7 implies that γ̃2i(G�H) = |V (G)| · |V (H)|
−α2(G�H). Let S be any minimum 2-independent set of the graph G�H. Let
us observe that the vertices of any column, which belong to the set S, form a 2-
independent set of the graph G. Therefore α2(G�H) ≤ |V (H)| · α2(G). We now
get

γ̃2i(G�H) = |V (G)||V (H)| − α2(G�H) ≥ |V (G)||V (H)| − |V (H)|α2(G)

≥ |V (G)||V (H)| − |V (H)|α2(G) + α2(H)(α2(G)− |V (G)|)

= |V (G)||V (H)| − |V (H)| · α2(G) + α2(H)α2(G)− α2(H)|V (G)|

= (|V (G)| − α2(G))(|V (H)| − α2(H)) = γ̃2i(G) · γ̃2i(H).

We have the following corollary from results of the previous subsection.

Corollary 27 For certain positive integers m and n we have:

• γ̃2i(Cm�Cn) > γ̃2i(Cm)γ̃2i(Cn);

• γ̃2i(Pm�Pn) > γ̃2i(Pm)γ̃2i(Pn);

• γ̃2i(Pm�Cn) > γ̃2i(Pm)γ̃2i(Cn);

• γ̃2i(Pm�Kn) > γ̃2i(Pm)γ̃2i(Kn);

• γ̃2i(Cm�Kn) > γ̃2i(Cm)γ̃2i(Kn).

4.3 Vizing-type conjecture for outer-connected domina-

tion

We disprove the Vizing-type conjecture for outer-connected domination.

Observation 28 ([1]) For integers n ≥ 3, γ̃c(Cn) = n− 2.

Counterexample. Let G be a graph C5�C5 with vertex set {vij : 1 ≤ i, j ≤ 5}.
Let us observe that {v11, v23, v35, v42, v54} is a minimum outer-connected domi-
nating set of G. Thus γ̃c(C5�C5) = 5. By Observation 28 we have γ̃c(C5) = 3.
We now get γ̃c(C5�C5) = 5 < 9 = γ̃c(C5) · γ̃c(C5).
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