Minimal 2-dominating sets in trees

Marcin Krzywkowski*
e-mail: marcin.krzywkowski@gmail.com

Faculty of Electronics, Telecommunications and Informatics
Gdańsk University of Technology
Narutowicza 11/12, 80–233 Gdańsk, Poland

Abstract

We provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time $O(1.3248^n)$. This implies that every tree has at most 1.3248^n minimal 2-dominating sets. We also show that this bound is tight.

Keywords: domination, 2-domination, minimal 2-dominating set, tree, counting, exact exponential algorithm, listing algorithm.

AMS Subject Classification: 05C05, 05C69, 05C85, 68R10, 68W05.

1 Introduction

Let $G = (V, E)$ be a graph. The order of a graph is the number of its vertices. By the neighborhood of a vertex v of G we mean the set $N_G(v) = \{u \in V(G) : uv \in E(G)\}$. The degree of a vertex v, denoted by $d_G(v)$, is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. The distance between two vertices of a graph is the number of edges in a shortest path connecting them. The eccentricity of a vertex is the greatest distance between it and any other vertex. The diameter of a graph G, denoted by $diam(G)$, is the maximum eccentricity

*The research was supported by the Polish National Science Centre grant 2011/02/A/ST6/00201.
among all vertices of G. By P_n we denote a path on n vertices. By a star we mean a connected graph in which exactly one vertex has degree greater than one.

A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of $V(G) \setminus D$ has a neighbor in D, while it is a 2-dominating set of G if every vertex of $V(G) \setminus D$ has at least two neighbors in D. A dominating (2-dominating, respectively) set D is minimal if no proper subset of D is a dominating (2-dominating, respectively) set of G. A minimal 2-dominating set is abbreviated as m2ds. Note that 2-domination is a type of multiple domination in which each vertex, which is not in the dominating set, is dominated at least k times for a fixed positive integer k.

Multiple domination was introduced by Fink and Jacobson [7], and further studied for example in [2, 10, 17]. For a comprehensive survey of domination in graphs, see [11, 12].

Observation 1 Every leaf of a graph G is in every 2-dominating set of G.

One of the typical questions in graph theory is how many subgraphs of a given property can a graph on n vertices have. For example, the famous Moon and Moser theorem [16] says that every graph on n vertices has at most $3^{n/3}$ maximal independent sets.

Combinatorial bounds are of interest not only on their own, but also because they are used for algorithm design as well. Lawler [15] used the Moon-Moser bound on the number of maximal independent sets to construct an $(1 + \sqrt{3})^n - n^{O(1)}$ time graph coloring algorithm, which was the fastest one known for twenty-five years. In 2003 Eppstein [6] reduced the running time of a graph coloring to $O(2.4151^n)$. In 2006 the running time was reduced [1, 14] to $O(2^n)$. For an overview of the field, see [9].

Fomin et al. [8] constructed an algorithm for listing all minimal dominating sets of a graph on n vertices in time $O(1.7159^n)$. There were also given graphs ($n/6$ disjoint copies of the octahedron) having $15^{n/6} \approx 1.5704^n$ minimal dominating sets. This establishes a lower bound on the running time of an algorithm for listing all minimal dominating sets of a given graph.

The number of maximal independent sets in trees was investigated in [18]. Couturier et al. [5] considered minimal dominating sets in various classes of graphs. The authors of [13] investigated the enumeration of minimal dominating sets in graphs.

They also characterized the extremal trees. The authors of [4] investigated the number of minimal dominating sets in trees containing all leaves.

We provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time $O(1.3248^n)$. This implies that every tree has at most 1.3248^n minimal 2-dominating sets. We also show that this bound is tight.

2 Listing algorithm

In this section we describe a recursive algorithm which lists all minimal 2-dominating sets of a given input tree T. The iterator of the solutions is denoted by $F(T)$.

Algorithm

Notice that the diameter of a tree can be easily determined in a polynomial time.

Let T be a tree. If $diam(T) = 0$, then $T = P_1 = v_1$. Let $F(T) = \{\{v_1\}\}$. If $diam(T) = 1$, then $T = P_2 = v_1v_2$. Let $F(T) = \{\{v_1, v_2\}\}$. If $diam(T) = 2$, then T is a star. By x we denote the support vertex of T. Let $F(T) = \{V(T) \setminus \{x\}\}$.

Now consider trees T with $diam(T) \geq 3$. Thus the order n of the tree T is at least four.

If some support vertex of T, say x, is adjacent to at least three leaves (we denote one of them by y), then let $T' = T - y$ and

$$F(T) = \{D' \cup \{y\}: D' \in F(T')\}.$$

Now consider trees T, in which every support vertex is adjacent to at most two leaves. The tree T can easily be rooted at a vertex r of maximum eccentricity $diam(T)$ in polynomial time. A leaf, say t, at maximum distance from r, can also be easily computed in polynomial time. Let v denote the parent of t and let u denote the parent of u. By T_x we denote the subtree induced by a vertex x and its descendants in the rooted tree T.

If $d_T(v) = 3$, then by a we denote the leaf adjacent to v and different from t. Let $T' = T - T_v$ and $T'' = T - t - a$, and let $F(T)$ be as follows,

$$\{D' \cup \{t, a\}: D' \in F(T')\}$$

$$\cup \{D'' \cup \{t, a\}: D'' \in F(T'') \text{ and } D'' \setminus \{v\} \notin F(T')\}.$$
If \(d_T(v) = 2 \) and \(d_T(u) \geq 3 \), then let \(T' = T - T_v, T'' = T - T_u \), and
\[
\mathcal{F}(T) = \{ D' \cup \{ t \} : u \in D' \in \mathcal{F}(T') \} \cup \{ D'' \cup V(T_u) \setminus \{ u \} : D'' \in \mathcal{F}(T'') \}.
\]
If \(d_T(v) = d_T(u) = 2 \), then let \(T' = T - T_v, T'' = T - T_u \), and
\[
\mathcal{F}(T) = \{ D' \cup \{ t \} : D' \in \mathcal{F}(T') \} \cup \{ D'' \cup \{ v, t \} : w \in D'' \in \mathcal{F}(T'') \}.
\]

3 Bounding the number of minimal 2-dominating sets

Now we prove that the running time of the algorithm from the previous section is \(O(1.3248^n) \).

Theorem 2 For every tree \(T \) of order \(n \), the algorithm from the previous section lists all minimal 2-dominating sets in time \(O(1.3248^n) \).

Proof. We prove that the running time of the algorithm is \(O(1.3248^n) \). Moreover, we prove that the number of minimal 2-dominating sets of \(T \) is at most \(\alpha^n \), where \(\alpha \approx 1.3248 \) is the positive solution of the equation \(x^3 - x - 1 = 0 \).

We proceed by induction on the number \(n \) of vertices of a tree \(T \). If \(\text{diam}(T) = 0 \), then \(T = P_1 = v_1 \). Obviously, \(\{ v_1 \} \) is the only \(m2ds \) of the path \(P_1 \). We have \(n = 1 \) and \(|\mathcal{F}(T)| = 1 \). Obviously, \(1 < \alpha \). If \(\text{diam}(T) = 1 \), then \(T = P_2 = v_1v_2 \).

It is easy to see that \(\{ v_1, v_2 \} \) is the only \(m2ds \) of the path \(P_2 \). We have \(n = 2 \) and \(|\mathcal{F}(T)| = 1 \). Obviously, \(1 < \alpha^2 \). If \(\text{diam}(T) = 2 \), then \(T \) is a star. By \(x \) we denote the support vertex of \(T \). It is easy to observe that \(V(T) \setminus \{ x \} \) is the only \(m2ds \) of the tree \(T \). We have \(n \geq 3 \) and \(|\mathcal{F}(T)| = 1 \). Obviously, \(1 < \alpha^n \).

Now assume that \(\text{diam}(T) \geq 3 \). Thus the order \(n \) of the tree \(T \) is at least four. The results we obtain by the induction on the number \(n \). Assume that they are true for every tree \(T' \) of order \(n' < n \).

First assume that some support vertex of \(T \), say \(x \), is adjacent to at least three leaves. Let \(y \) be a leaf adjacent to \(x \). Let \(T' = T - y \). Let \(D' \) be a \(m2ds \) of the tree \(T' \). Obviously, \(D' \cup \{ y \} \) is an \(m2ds \) of \(T \). Thus all elements of \(\mathcal{F}(T) \) are minimal 2-dominating sets of the tree \(T \). Now let \(D \) be any \(m2ds \) of the tree \(T \). By Observation 1 we have \(y \in D \). Let us observe that \(D \setminus \{ y \} \) is an \(m2ds \) of the tree \(T' \) as the vertex \(x \) is still dominated at least twice. By the inductive
hypothesis we have $D \setminus \{y\} \in \mathcal{F}(T')$. Therefore $\mathcal{F}(T)$ contains all minimal 2-dominating sets of the tree T. Now we get $|\mathcal{F}(T)| = |\mathcal{F}(T')| \leq \alpha^{n-1} < \alpha^n$. Henceforth, we can assume that every support vertex of T is adjacent to at most two leaves.

We now root T at a vertex r of maximum eccentricity $\text{diam}(T)$. Let t be a leaf at maximum distance from r, v be the parent of t, and u be the parent of v in the rooted tree. If $\text{diam}(T) \geq 4$, then let w be the parent of u. By T_x we denote the subtree induced by a vertex x and its descendants in the rooted tree T.

Assume that $d_T(v) = 3$. By a we denote the leaf adjacent to v and different from t. Let $T' = T - T_v$ and $T'' = T - t - a$. Let us observe that all elements of $\mathcal{F}(T)$ are minimal 2-dominating sets of the tree T. Now let D be any m2ds of the tree T. By Observation 1 we have $t, a \in D$. If $v \notin D$, then observe that $D \setminus \{t, a\}$ is an m2ds of the tree T'. By the inductive hypothesis we have $D \setminus \{t, a\} \in \mathcal{F}(T')$. Now assume that $v \in D$. Let us observe that $D \setminus \{t, a\}$ is an m2ds of the tree T''. By the inductive hypothesis we have $D \setminus \{t, a\} \in \mathcal{F}(T'')$. The set $D \setminus \{v, t, a\}$ is not an m2ds of the tree T', otherwise $D \setminus \{v\}$ is a 2-dominating set of the tree T, a contradiction to the minimality of D. By the inductive hypothesis we have $D \setminus \{v, t, a\} \notin \mathcal{F}(T')$. Therefore $\mathcal{F}(T)$ contains all minimal 2-dominating sets of the tree T. Now we get $|\mathcal{F}(T)| = |\mathcal{F}(T')| + |D'' \setminus \{v\} \notin \mathcal{F}(T')| \leq |\mathcal{F}(T')| + |\mathcal{F}(T'')| \leq \alpha^{n-3} + \alpha^{n-2} = \alpha^{n-3}(\alpha + 1) = \alpha^{n-3} \cdot \alpha^3 = \alpha^n$.

Now assume that $d_T(v) = 2$. Assume that $d_T(u) \geq 3$. Let $T' = T - T_v$ and $T'' = T - T_u$. Let us observe that all elements of $\mathcal{F}(T)$ are minimal 2-dominating sets of the tree T. Now let D be any m2ds of the tree T. By Observation 1 we have $t \in D$. If $v \notin D$, then $u \in D$ as the vertex v has to be dominated twice. Observe that $D \setminus \{t\}$ is an m2ds of the tree T'. By the inductive hypothesis we have $D \setminus \{t\} \in \mathcal{F}(T')$. Now assume that $v \in D$. We have $u \notin D$, otherwise $D \setminus \{v\}$ is a 2-dominating set of the tree T, a contradiction to the minimality of D. Observe that $D \cap V(T'')$ is an m2ds of the tree T''. By the inductive hypothesis we have $D \cap V(T'') \in \mathcal{F}(T'')$. Therefore $\mathcal{F}(T)$ contains all minimal 2-dominating sets of the tree T. Now we get $|\mathcal{F}(T)| \leq |\mathcal{F}(T')| + |\mathcal{F}(T'')| \leq \alpha^{n-2} + \alpha^{n-3} = \alpha^{n-3}(\alpha + 1) = \alpha^{n-3} \cdot \alpha^3 = \alpha^n$.

Now assume that $d_T(u) = 2$. Let $T' = T - T_v$ and $T'' = T - T_u$. Let us observe that all elements of $\mathcal{F}(T)$ are minimal 2-dominating sets of the tree T. Now let D be any m2ds of the tree T. By Observation 1 we have $t \in D$. If $v \notin D$, then observe that $D \setminus \{t\}$ is an m2ds of the tree T'. By the inductive hypothesis
we have \(D \setminus \{ t \} \in \mathcal{F}(T') \). Now assume that \(v \in D \). We have \(u \notin D \), otherwise \(D \setminus \{ v \} \) is a 2-dominating set of the tree \(T \), a contradiction to the minimality of \(D \). Moreover, we have \(w \in D \) as the vertex \(u \) has to be dominated twice. Observe that \(D \setminus \{ v, t \} \) is an m2ds of the tree \(T'' \). By the inductive hypothesis we have \(D \setminus \{ v, t \} \in \mathcal{F}(T'') \). Therefore \(\mathcal{F}(T) \) contains all minimal 2-dominating sets of the tree \(T \). Now we get \(|\mathcal{F}(T)| \leq |\mathcal{F}(T')| + |\mathcal{F}(T'')| \leq \alpha^{n-2} + \alpha^{n-3} = \alpha^{n-3}(\alpha + 1) = \alpha^{n-3} \cdot \alpha^3 = \alpha^n \).

It follows from the proof of the above theorem that any tree of order \(n \) has at most \(1.3248n \) minimal 2-dominating sets.

Corollary 3 Every tree of order \(n \) has at most \(\alpha^n \) minimal 2-dominating sets, where \(\alpha \approx 1.3248 \) is the positive solution of the equation \(x^3 - x - 1 = 0 \).

Now we show that the bound from the previous corollary is tight. Let \(a_n \) denote the number of minimal 2-dominating sets of the path \(P_n \). The next remark follows from the proof of Theorem 2.

Remark 4 For every positive integer \(n \) we have

\[
a_n = \begin{cases}
1 & \text{if } n \leq 3; \\
 a_{n-3} + a_{n-2} & \text{if } n \geq 4.
\end{cases}
\]

We have \(\lim_{n \to \infty} \sqrt[n]{a_n} = \alpha \), where \(\alpha \approx 1.3247 \) is the positive solution of the equation \(x^3 - x - 1 = 0 \). This implies that the bound from Corollary 3 is tight.

References

