Minimal 2-dominating sets in trees

Marcin Krzywkowski*

e-mail: marcin.krzywkowski@gmail.com

Faculty of FElectronics, Telecommunications and Informatics
Gdarisk University of Technology
Narutowicza 11/12, 80-233 Gdarisk, Poland

Abstract

We provide an algorithm for listing all minimal 2-dominating sets of
a tree of order n in time (0(1.3248"™). This implies that every tree has at
most 1.3248™ minimal 2-dominating sets. We also show that this bound is
tight.
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1 Introduction

Let G = (V,E) be a graph. The order of a graph is the number of its ver-
tices. By the neighborhood of a vertex v of G we mean the set Ng(v) = {u
€ V(G): uwv € E(G)}. The degree of a vertex v, denoted by dg(v), is the car-
dinality of its neighborhood. By a leaf we mean a vertex of degree one, while
a support vertex is a vertex adjacent to a leaf. The distance between two vertices
of a graph is the number of edges in a shortest path connecting them. The ec-
centricity of a vertex is the greatest distance between it and any other vertex.

The diameter of a graph G, denoted by diam(G), is the maximum eccentricity
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among all vertices of G. By P, we denote a path on n vertices. By a star we
mean a connected graph in which exactly one vertex has degree greater than one.

A subset D C V(G) is a dominating set of G if every vertex of V(G) \ D has
a neighbor in D, while it is a 2-dominating set of G if every vertex of V(G) \ D
has at least two neighbors in D. A dominating (2-dominating, respectively) set
D is minimal if no proper subset of D is a dominating (2-dominating, respec-
tively) set of G. A minimal 2-dominating set is abbreviated as m2ds. Note that
2-domination is a type of multiple domination in which each vertex, which is not
in the dominating set, is dominated at least k times for a fixed positive integer k.
Multiple domination was introduced by Fink and Jacobson [7], and further stud-
ied for example in [2, 10, 17]. For a comprehensive survey of domination in graphs,
see [11, 12].

Observation 1 Fvery leaf of a graph G is in every 2-dominating set of G.

One of the typical questions in graph theory is how many subgraphs of a given
property can a graph on n vertices have. For example, the famous Moon and
Moser theorem [16] says that every graph on n vertices has at most 3"/3 maximal
independent sets.

Combinatorial bounds are of interest not only on their own, but also because
they are used for algorithm design as well. Lawler [15] used the Moon-Moser
bound on the number of maximal independent sets to construct an (1 + /3)"
-n®W time graph coloring algorithm, which was the fastest one known for twenty-
five years. In 2003 Eppstein [6] reduced the running time of a graph coloring
to O(2.4151"). In 2006 the running time was reduced [1, 14] to O(2"). For
an overview of the field, see [9].

Fomin et al. [8] constructed an algorithm for listing all minimal dominating
sets of a graph on n vertices in time O(1.7159"). There were also given graphs
(n/6 disjoint copies of the octahedron) having 15"/% ~~ 1.5704" minimal dominat-
ing sets. This establishes a lower bound on the running time of an algorithm for
listing all minimal dominating sets of a given graph.

The number of maximal independent sets in trees was investigated in [18].
Couturier et al. [5] considered minimal dominating sets in various classes of graphs.
The authors of [13] investigated the enumeration of minimal dominating sets
in graphs.

Bréd and Skupieri [3] gave bounds on the number of dominating sets of a tree.



They also characterized the extremal trees. The authors of [4] investigated the
number of minimal dominating sets in trees containing all leaves.

We provide an algorithm for listing all minimal 2-dominating sets of a tree
of order n in time ((1.3248"). This implies that every tree has at most 1.3248"

minimal 2-dominating sets. We also show that this bound is tight.

2 Listing algorithm

In this section we describe a recursive algorithm which lists all minimal 2-domina-
ting sets of a given input tree T'. The iterator of the solutions is denoted by F(7T').

Algorithm

Notice that the diameter of a tree can be easily determined in a polynomial
time.

Let T be a tree. If diam(7T") = 0, then ' = P, = vy. Let F(T) = {{v1}}.
If diam(7) = 1, then T' = P, = vjve. Let F(T') = {{vy,v2}}. If diam(T) = 2,
then 7" is a star. By x we denote the support vertex of T'. Let F(T') = {V(T)
\{z}}-

Now consider trees T with diam(7") > 3. Thus the order n of the tree T is at
least four.

If some support vertex of T, say x, is adjacent to at least three leaves (we
denote one of them by y), then let 7" =T — y and

F(T)={D'u{y}: D' e F(T")}.

Now consider trees T', in which every support vertex is adjacent to at most
two leaves. The tree T' can easily be rooted at a vertex r of maximum eccentricity
diam(7") in polynomial time. A leaf, say ¢, at maximum distance from r, can also
be easily computed in polynomial time. Let v denote the parent of ¢t and let u
denote the parent of v in the rooted tree. If diam(7") > 4, then let w denote
the parent of u. By T, we denote the subtree induced by a vertex x and its
descendants in the rooted tree 7.

If dp(v) = 3, then by a we denote the leaf adjacent to v and different from ¢.
Let T"=T —T,and 7" =T — t — a, and let F(T) be as follows,

{D'U{t,a}: D' € F(T')}
U {D"U{t,a}: D" € F(T") and D"\ {v} ¢ F(T")}.
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If dr(v) =2 and dp(u) > 3, thenlet 7" =T —-T,, T" =T — T,, and
F(T)={D'U{t}:ueD eFT)}U{D"UV(T,) \{u}: D" € F(T")}.
If dr(v) =dp(u) =2, thenlet 7" =T -T,, T" =T — T,, and

F(T)={D' U{t}: D' € F(T')} U{D" U{v,t}: we D" € F(T")}.

3 Bounding the number of minimal 2-dominating

sets

Now we prove that the running time of the algorithm from the previous section
is O0(1.3248").

Theorem 2 For every tree T' of order n, the algorithm from the previous section

lists all minimal 2-dominating sets in time O(1.3248™).

Proof. We prove that the running time of the algorithm is O(1.3248"). Moreover,
we prove that the number of minimal 2-dominating sets of 7" is at most o™, where
a ~ 1.3248 is the positive solution of the equation #* —x — 1 = 0.

We proceed by induction on the number n of vertices of a tree T'. If diam(7")
=0, then "= P, = v;. Obviously, {v;} is the only m2ds of the path P;. We have
n =1 and |F(T)| = 1. Obviously, 1 < a. If diam(7") = 1, then T' = P, = vjvs.
It is easy to see that {vy, v} is the only m2ds of the path P,. We have n = 2
and |F(T)| = 1. Obviously, 1 < o?. If diam(T) = 2, then T is a star. By = we
denote the support vertex of T'. It is easy to observe that V(7T') \ {z} is the only
m2ds of the tree T. We have n > 3 and |F(7T')| = 1. Obviously, 1 < o™,

Now assume that diam(7) > 3. Thus the order n of the tree T is at least
four. The results we obtain by the induction on the number n. Assume that they
are true for every tree 1" of order n’ < n.

First assume that some support vertex of T, say x, is adjacent to at least
three leaves. Let y be a leaf adjacent to x. Let 7" =T —y. Let D' be a m2ds
of the tree T". Obviously, D’ U {y} is an m2ds of 7. Thus all elements of F(7T')
are minimal 2-dominating sets of the tree 7. Now let D be any m2ds of the
tree T'. By Observation 1 we have y € D. Let us observe that D\ {y} is an m2ds

of the tree T" as the vertex z is still dominated at least twice. By the inductive



hypothesis we have D \ {y} € F(T"). Therefore F(T') contains all minimal 2-
dominating sets of the tree T. Now we get [F(T)| = |F(T")] < o™ ! < o™
Henceforth, we can assume that every support vertex of 7" is adjacent to at most
two leaves.

We now root T" at a vertex r of maximum eccentricity diam(7"). Let ¢ be a leaf
at maximum distance from r, v be the parent of ¢, and u be the parent of v in
the rooted tree. If diam(7") > 4, then let w be the parent of u. By T, we denote
the subtree induced by a vertex x and its descendants in the rooted tree T

Assume that dp(v) = 3. By a we denote the leaf adjacent to v and different
fromt¢. Let 7" =T — T, and T” =T —t — a. Let us observe that all elements
of F(T) are minimal 2-dominating sets of the tree 7. Now let D be any m2ds
of the tree T. By Observation 1 we have t,a € D. If v ¢ D, then observe
that D \ {t,a} is an m2ds of the tree 7". By the inductive hypothesis we have
D\ {t,a} € F(T"). Now assume that v € D. Let us observe that D \ {t,a} is
an m2ds of the tree T”. By the inductive hypothesis we have D\ {t,a} € F(T").
The set D \ {v,t,a} is not an m2ds of the tree 7", otherwise D \ {v} is a 2-
dominating set of the tree T', a contradiction to the minimality of D. By the
inductive hypothesis we have D \ {v,t,a} ¢ F(T"). Therefore F(T') contains all
minimal 2-dominating sets of the tree 7. Now we get |F(T)| = |F(T")| + |D”
e F(T"): D"\ {v} ¢ F(T)| < |FT")|+|FT")| < a3 +a"?=a"3(a+1)
=a" 3.0’ =a"

Now assume that dp(v) = 2. Assume that dp(u) > 3. Let 7" =T — T, and
T" =T —T,. Let us observe that all elements of F(T") are minimal 2-dominating
sets of the tree T'. Now let D be any m2ds of the tree 7. By Observation 1 we
have t € D. If v ¢ D, then u € D as the vertex v has to be dominated twice.
Observe that D \ {¢t} is an m2ds of the tree 7”. By the inductive hypothesis
we have D\ {t} € F(T’). Now assume that v € D. We have u ¢ D, otherwise
D\{v} is a 2-dominating set of the tree T, a contradiction to the minimality of D.
Observe that D NV(T"”) is an m2ds of the tree T”. By the inductive hypothesis
we have DNV(T") € F(T"). Therefore F(T') contains all minimal 2-dominating
sets of the tree T. Now we get |[F(T)| < |F(T")| + |F(T")] < a2 + o"3
=a"3(a+1)=a"3 a®=a".

Now assume that dr(u) = 2. Let 7" =T — T, and 7" = T — T,. Let us
observe that all elements of F(T") are minimal 2-dominating sets of the tree 7.
Now let D be any m2ds of the tree T. By Observation 1 we havet € D. Ifv ¢ D,
then observe that D\ {t} is an m2ds of the tree 7”. By the inductive hypothesis
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we have D\ {t} € F(T'). Now assume that v € D. We have u ¢ D, otherwise
D\ {v} is a 2-dominating set of the tree T', a contradiction to the minimality
of D. Moreover, we have w € D as the vertex u has to be dominated twice.
Observe that D \ {v,t} is an m2ds of the tree 7”. By the inductive hypothesis
we have D\ {v,t} € F(T"). Therefore F(T') contains all minimal 2-dominating
sets of the tree T. Now we get |F(T)| < |F(T")| + |F(T")] < o™ + "3

=a"3(a+1)=a"3 - a=a™ |

It follows from the proof of the above theorem that any tree of order n has at

most 1.3248" minimal 2-dominating sets.

Corollary 3 FEvery tree of order n has at most o™ minimal 2-dominating sets,

where a = 1.3248 is the positive solution of the equation x3 —x — 1 = 0.

Now we show that the bound from the previous corollary is tight. Let a,
denote the number of minimal 2-dominating sets of the path P,. The next remark

follows from the proof of Theorem 2.

Remark 4 For every positive integer n we have

{1 ifn <3
an =

Ap—3 + Ap—2 an Z 4.

We have lim,,_,, {/a, = a, where o ~ 1.3247 is the positive solution of the
equation 3 — z — 1 = 0. This implies that the bound from Corollary 3 is tight.
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