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Abstract

For a graph G = (V, E), a subset D C V(G) is a total dominating set
if every vertex of G has a neighbor in D. The total domination number
of G is the minimum cardinality of a total dominating set of G. A subset
D C V(G) is a 2-dominating set of G if every vertex of V(G) \ D has at
least two neighbors in D, while it is a 2-outer-independent dominating
set of G if additionally the set V(G) \ D is independent. The 2-outer-
independent domination number of G is the minimum cardinality of a 2-
outer-independent dominating set of G. We characterize all trees with
equal total domination and 2-outer-independent domination numbers.
Keywords: total domination, 2-outer-independent domination, 2-domi-
nation, tree.
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1 Introduction

Let G = (V, E) be a graph. By the neighborhood of a vertex v of G we mean
the set Ng(v) = {u € V(G): uv € E(G)}. The degree of a vertex v, denoted
by dg(v), is the cardinality of its neighborhood. By a leaf we mean a vertex
of degree one, while a support vertex is a vertex adjacent to a leaf. We say
that a support vertex is strong (weak, respectively) if it is adjacent to at least
two leaves (exactly one leaf, respectively). We say that a subset of V(G) is
independent if there is no edge between any two vertices of this set. The path
on n vertices we denote by P,. Let T be a tree, and let v be a vertex of T'.
We say that v is adjacent to a tree H if there is a neighbor of v, say z, such
that the tree resulting from 7' by removing the edge vz, and which contains
the vertex x, is a tree H. We say that v is adjacent to a path P, if there is
a neighbor of v, say x, such that the subtree resulting from 7" by removing the
edge vx and which contains the vertex x as a leaf, is a path P,,. By a star we
mean a connected graph in which exactly one vertex has degree greater than
one.
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A subset D C V(G) is a dominating set of G if every vertex of V(G) \ D
has a neighbor in D, while it is a total dominating set, abbreviated TDS,
of G if every vertex of G has a neighbor in D. The domination (total domi-
nation, respectively) number of G, denoted by v(G) (1:(G), respectively), is
the minimum cardinality of a dominating (total dominating, respectively) set
of G. A total dominating set of G’ of minimum cardinality is called a v;(G)-set.
Total domination in graphs was introduced by Cockayne, Dawes, and Hedet-
niemi [6], and further studied for example in [1-3, 6-8, 10, 15, 19, 20]. For
a comprehensive survey of domination in graphs, see [14].

A subset D C V(@) is a 2-dominating set, abbreviated 2DS, of G if every
vertex of V(G)\ D has at least two neighbors in D. The 2-domination number
of G, denoted by v2(G), is the minimum cardinality of a 2-dominating set of G.
Note that 2-domination is a type of multiple domination in which each vertex,
which is not in the dominating set, is dominated at least k times for a fixed
positive integer k. Multiple domination in graphs was introduced by Fink and
Jacobson [9], and further studied for example in [4, 5, 9, 11, 12, 16, 18].

A subset D C V(G) is a 2-outer-independent dominating set, abbreviated
20IDS, of G if every vertex of V(G) \ D has at least two neighbors in D and
the set V(G)\ D is independent. The 2-outer-independent domination number
of G, denoted by 7*(G), is the minimum cardinality of a 2-outer-independent
dominating set of G. A 2-outer-independent dominating set of G of minimum
cardinality is called a v$*(G)-set. The study of 2-outer-independent domina-
tion in graphs was initiated in [17].

We characterize all trees with equal total domination and 2-outer-indepen-
dent domination numbers.

2 Results

Since the one-vertex graph does not have a total dominating set, in this paper,
by a tree we mean only a connected graph with no cycle, and which has at
least two vertices.

We begin with the following three straightforward observations.

Observation 1 Fvery support vertex of a graph G is in every TDS of G.

Observation 2 For every connected graph G of diameter at least three there
exists a v:(G)-set that contains no leaf.

Observation 3 FEwvery leaf of a graph G is in every 20IDS of G.

We now prove that the 2-outer-independent domination number of any
tree is greater than or equal to its total domination number.

Lemma 4 For every tree T we have ¥§/(T) > v(T).

Proof. Since every 20IDS of a tree T is a 2DS of this tree, we have v5(T)
> v2(T). In [13] it is proved that for every tree T' we have v2(T") > v (T"). We
now get 15" (T') > 72(T) > v(T). n



We characterize all trees with equal total domination and 2-outer-indepen-
dent domination numbers. For this purpose we introduce a family T of trees
T = Ty, that can be obtained as follows. Let T € {P», P3}. If k is a positive
integer, then Tj41 can be obtained recursively from T}, by one of the following
operations.

e Operation Op: Attach a path P» by joining one of its vertices to a vertex
of Ty, adjacent to a path Ps.

e Operation Oy: Attach a path P3; by joining one of its leaves to a vertex
of T, which is not a leaf and is adjacent to a path Ps or to a support
vertex.

e Operation O3: Attach a path Ps by joining one of its support vertices to
a vertex of T}, which is adjacent to a path P» or to a path Ps through
a support vertex.

e Operation O4: Attach a path P; by joining one of its leaves to a vertex
of T}, which is a leaf, or is adjacent to a path P, or P, or to a path Ps
through a support vertex.

e Operation Os: Let x be a vertex of Ty adjacent to a leaf, say y, and to
a path Py, say abcd. Let a and x be adjacent. Remove the leaf y.
Then either attach a path P; by joining one of its leaves to the vertex c,
or attach a path P3; by joining one of its leaves to the vertex b and
a path P, by joining one of its vertices to the vertex d.

e Operation Og: Let x be a support vertex of T, # Ps; adjacent to
a path P;. Remove the path and a leaf adjacent to z, and attach
a path Pg by joining one of its support vertices to the vertex x.

We now prove that for every tree of the family 7, the total domination
and the 2-outer-independent domination numbers are equal.

Lemma 5 If T € T, then v(T) = ~$4(T).

Proof. We use the induction on the number k of operations performed to
construct the tree T. If T = P, then obviously w(T) = 2 = A§4T). If
T = P3, then also y(T) = 2 = 48(T). Let k be a positive integer. Assume
that the result is true for every tree TV = T}, of the family 7 constructed by
k — 1 operations. Let T' = Tj11 be a tree of the family 7 constructed by k
operations.

First assume that 7" is obtained from 7" by operation O;. The vertex to
which is attached P, we denote by x. Let viv2 be the attached path. Let v; be
joined to x. Let yz be a path P, adjacent to x and different from vivy. Let x
and y be adjacent. Let us observe that there exists a 75*(T")-set that contains
the vertex x. Let D’ be such a set. It is easy to see that D'U{va} is a 20IDS of
the tree T. Thus 79 (T) < 75/(T")+ 1. Now let D be a ~;(T)-set that contains



no leaf. By Observation 1 we have v,y € D. Let us observe that D\ {v1} is
a TDS of the tree 7" as the vertex x has a neighbor in D \ {v;}. Therefore
w(T") < %(T) — 1. We now get 15°(T) < 48(T") + 1 = w(T") + 1 < %(T).
On the other hand, by Lemma 4 we have v§/(T) > ~;(T). This implies that
2§ (T) = (T).

Now assume that T is obtained from 7" by operation Oy. The vertex to
which is attached P3; we denote by z. Let vivovs be the attached path. Let vy
be joined to z. Let D’ be a v$*(T")-set. It is easy to observe that D' U {vi,v3}
is a 20IDS of the tree T. Thus v§/(T) < v$(T") + 2. First assume that x is
adjacent to a path Ps, say abe. Let a and x be adjacent. Let D be a ~;(T)-set
that contains no leaf. By Observation 1 we have vo € D. Each one of the
vertices v9 and b has to be dominated, thus vi,a € D. Let us observe that
D\ {v1,v2} is a TDS of the tree T". Now assume that z is adjacent to a support
vertex, say y. Let D be a v(T)-set that contains no leaf. By Observation 1
we have vo,y € D. The vertex vy has to be dominated, thus v; € D. Let us
observe that now also D\ {v1,v2} is a TDS of the tree T77. We conclude that
w(T") < w(T) — 2. We now get 15'(T) < 8" (T") +2 = w(T") + 2 < %(T).
This implies that v§/(T) = (7).

Now assume that T is obtained from T” by operation O3. The vertex to
which is attached P5 we denote by x. Let vivevzvivs be the attached path. Let
v be joined to x. Let y be a support vertex adjacent to x and different from vs.
Let us observe that there exists a v5!(T")-set that contains the vertex z. Let D’
be such a set. It is easy to observe that D'U{v1,vs, v5} is a 20IDS of the tree T'.
Thus v5/(T) < v5(T") + 3. Now let D be a ;(T)-set that contains no leaf. By
Observation 1 we have vy, vo,y € D. The vertex vy has to be dominated, thus
v3 € D. Let us observe that D\ {va,v3,v4} is a TDS of the tree T”. Therefore
W(T') < w(T) — 3. We now get 15(T) < 3" (T") + 3 = w(T") + 3 < (7).
This implies that v$(T) = 1 (T).

Now assume that T is obtained from 7" by operation Q4. The vertex to
which is attached Py we denote by x. Let vivovsvs be the attached path. Let
v be joined to x. Let us observe that there exists a v9*(T")-set that contains
the vertex z. Let D’ be such a set. It is easy to observe that D’ U {ve,v4} is
a 20IDS of the tree T. Thus v$*(T) < 7' (T")+2. Now let us observe that there
exists a . (7T')-set that does not contain the vertices v4 and v;. Let D be such
a set. By Observation 1 we have v3 € D. The vertex vs has to be dominated,
thus v € D. Observe that D \ {v2,v3} is a TDS of the tree 7. Therefore
w(T") < w(T) — 2. We now get 15°(T) < 8" (T") +2 = w(T") + 2 < %(T).
This implies that v§/(T) = v (T).

Now assume that T is obtained from 7" by operation Q5. The attached
path P3 we denote by vivovs. Let v be joined to b or c. If we also attach
a path Py, then we denote it by v4vs. Let v4 be joined to d. Let D’ be a8 (T")-
set that contains the vertices b and z. By Observation 3 we have d,y € D’.
If we only attach a path Ps, then let us observe that D'\ {y} U {v1,v3} is
a 20IDS of the tree T'. If we also attach a path P, then let us observe that
D'\ {y}U{v1,v3,v5} is a 201IDS of the tree T'. If we only attach a path P3, then
let us observe that there exists a v¢(7")-set that does not contain the vertices
vs, d, b and a. Let D be such a set. By Observation 1 we have vy,c € D.



Each one of the vertices v and a has to be dominated, thus v1,x € D. Let
us observe that D U {b} \ {vi,v2} is a TDS of the tree T". If we also attach
a path P», then let us observe that there exists a ~;(T)-set that does not
contain the vertices vs, vs, ¢, b and a. Let D be such a set. By Observation 1
we have v, v4 € D. Each one of the vertices vs, v4, and a has to be dominated,
thus vy, d,z € D. Let us observe that DU{b, c}\ {v1,v2,d,v4} is a TDS of the
tree T". We now conclude that v5/(T) +~v(T") < v5(T") +~:(T). This implies
that 75"(T) = (7).

Now assume that T is obtained from 7" by operation Og. The attached
path we denote by vijvovsvivsvg. Let vy be joined to z. Let y be a leaf
adjacent to z, and which is being removed. Let abc denote a path P; adjacent
to z, and which is being removed. Let a and z be adjacent. Let D’ be
a 75 (T")-set that contains the vertex a. By Observation 3 we have ¢,y € D'.
The set D" is minimal, thus b ¢ D’. If x € D', then it is easy to observe that
D'"\{a, ¢,y}U{v1,v2,v4,v6} is a 20IDS of the tree T'. Now assume that « ¢ D’.
Since Ty # Ps, the vertex x has at least three neighbors in the tree T’. Let z
be a neighbor of = other than a and y. We have z € D’ as the set V(T") \ D’
is independent. Let us observe that now also D'\ {a,c¢,y} U {v1,v2,v4,v6} is
a 20IDS of the tree T. Thus v§'(T) < 75/(T") + 1. Now let D be a v (T)-set
that does not contain the vertices vg, vs and vi. Let D be such a set. By
Observation 3 we have vs,vo € D. Each one of the vertices vs and vy has to
be dominated, thus v4,z € D. Let us observe that D U {a,b} \ {v2,v4,v5}
is a TDS of the tree T”. Therefore 1(T") < %(T) — 1. We now get v5'(T)
<AGT") + 1 =3(T") + 1 < v(T). This implies that v (T) = ~¢(T). m

We now prove that if the total domination and the 2-outer-independent
domination numbers of a tree are equal, then the tree belongs to the family 7.

Lemma 6 Let T be a tree. If (T) = +34(T), then T € T.

Proof. If diam(7T) = 1, then T'= P, € 7. Now assume that diam(7T") = 2.
Thus T is a star. If T'= P3, then T' € T. Now assume that 7T is a star different
from P3. We have v(T) =2 < n — 1 = 73(T).

Now assume that diam(7") > 3. Thus the order n of the tree T is at least
four. We obtain the result by the induction on the number n. Assume that
the lemma is true for every tree T of order n’ < n.

First assume that some support vertex of T, say x, is strong. Let y and z be
leaves adjacent to x. Let 7" = T —y. Let D’ be a v4(T")-set. By Observation 1
we have z € D’. It is easy to see that D’ is a TDS of the tree T. Thus
7 (T) < 4(T"). Now let D be a 75! (T)-set. By Observation 3 we have y, z € D.
If 2 € D, then it is easy to observe that D\ {y} is a 20IDS of the tree T".
Now assume that * ¢ D. Let k be a neighbor of x other than y and z.
The set V(T') \ D is independent, thus k € D. Let us observe that now also
D\ {y} is a 20IDS of the tree 7" as the vertex x has at least two neighbors
in D\ {y}. Therefore v§/(T") < 7$/(T) — 1. We now get 1 (T") > v(T)
= Y§Y(T) > 4$4(T") + 1 > +$(T"). This is a contradiction as by Lemma 4 we
have v;(T") < 75/(T"). Therefore every support vertex of T is weak.



We now root T at a vertex r of maximum eccentricity diam(T"). Let ¢
be a leaf at maximum distance from r, v be the parent of ¢, and u be the
parent of v in the rooted tree. If diam(7") > 4, then let w be the parent of u.
If diam(7") > 5, then let d be the parent of w. If diam(7") > 6, then let e
be the parent of d. If diam(7T") > 7, then let f be the parent of e. By T, we
denote the subtree induced by a vertex x and its descendants in the rooted
tree T

Assume that dp(u) > 3. Let « be a child of u other than v. First assume
that x is a leaf. Let 77 = T — x. Let D’ be a v (T")-set that contains no
leaf. The vertex v has to be dominated, thus v € D’. It is easy to see
that D’ is a TDS of the tree T. Thus 1(T) < v(T"). Now let us observe
that there exists a ¢ (T)-set that contains the vertex u. Let D be such
a set. By Observation 3 we have z € D. It is easy to observe that D \ {x}
is a 20IDS of the tree T'. Therefore v$*(T") < v§4(T) — 1. We now get
Y (T") > (T) = v$4(T) > v$4(T") + 1 > ~$4(T"), a contradiction.

Thus z is a support vertex of degree two. Let TV = T — T,. Let D’
be a v(T')-set that contains no leaf. The vertex z has to be dominated,
thus w € D'. Tt is easy to see that D’ U {v} is a TDS of the tree T. Thus
%(T) < 3(T") + 1. Now let us observe that there exists a v$*(T)-set that
does not contain the vertex v. Let D be such a set. By Observation 3 we
have t € D. Observe that D \ {t} is a 20IDS of the tree T". Therefore
5H(T') < A8(T) — 1. We now get 3(T") > %(T) — 1 = 78" (T) — 1 > ~8(T").
On the other hand, by Lemma 4 we have v(T") < 4¢*(T"). This implies that
% (T") = ~$4(T"). By the inductive hypothesis we have 77 € T. The tree T
can be obtained from 7" by operation O;. Thus 7' € T.

Now assume that dr(u) = 2. First assume that there is a child of w
other than u, say k, such that the distance of w to the most distant vertex
of T}, is three or two. It suffices to consider only the possibilities when T}
is a path P3 or Po. Let 7" =T — T,. Let D' be a v(T")-set. It is easy to
observe that D' U {u,v} is a TDS of the tree T. Thus y(T) < w(T") + 2.
Now let D be a 7§ (T)-set that contains the vertex u. By Observation 3
we have t € D. The set D is minimal, thus v ¢ D. If w € D, then it is
easy to observe that D\ {u,t} is a 20IDS of the tree 7’. Now assume that
w ¢ D. The set V(T) \ D is independent, thus k,d € D. Let us observe that
now also D \ {u,t} is a 20IDS of the tree T" as the vertex w has at least
two neighbors in D \ {u,t}. Therefore 4¢/(T") < 7§/(T) — 2. We now get
Y (T") > (T) —2 = ~v5(T) — 2 > 4§¢(T"). This implies that v, (T") = v5¢(T").
By the inductive hypothesis we have T" € 7. The tree T can be obtained
from T" by operation Os. Thus T' € T.

Now assume that some child of w, say z, is a leaf. We can assume that
dr(w) = 3. First assume that there is a child of d other than w, say k, such
that the distance of d to the most distant vertex of T}, is four or two. It suffices
to consider the possibilities when T}, is isomorphic to T},, or T} is a path Py
or P,. First assume that T} is isomorphic to T, or T} is a path P». Let
T' =T-T,. Let D' be a v(T")-set. It is easy to observe that D'U{w,u, v} is
a TDS of the tree T. Thus (7)) < v(T") + 3. Now let D be a 7§!(T)-set that
does not contain the vertices v and w. By Observation 3 we have t,x € D.



The vertex u has no neighbor in D, thus v € D. Observe that D \ {u,t,x}
is a 20IDS of the tree T'. Therefore 7$/(T") < ~7§4(T) — 3. We now get
W(T') > 3w(T) =3 =~8(T) — 3 > 78" (T"). This implies that v (T") = 7§'(T").
By the inductive hypothesis we have T" € T. The tree T can be obtained
from T” by operation O3. Thus T' € T.

Now assume that T}, is a path Py, say klmp. Let T" = T — T},. Let D’
be a v (T")-set. It is easy to observe that D’ U {l,m} is a TDS of the tree T.
Thus %(T) < w%(T") + 2. Now let D be a 7' (T)-set that does not contain
the vertices m and k. By Observation 3 we have p € D. The vertex [ has no
neighbor in D, thus [ € D. Observe that D \ {l,p} is a 20IDS of the tree T".
Therefore v§¢(T") < v§(T) — 2. We now get v(T") > v(T) — 2 = v$4(T) — 2
> ~94(T"). This implies that v,(T") = 78(T"). By the inductive hypothesis
we have T” € T. The tree T can be obtained from T” by operation Q4. Thus
TeT.

Now assume that there is a child of d, say k, such that the distance of d
to the most distant vertex of Tj is three. It suffices to consider only the
possibility when T}, is a path P3, say klm. Let T/ = T — T}. Similarly as
earlier we conclude that v4(T) < v(T") + 2. Now let D be a ~v§*(T)-set that
contains the vertices u and d. By Observation 3 we have m € D. Without
loss of generality we assume that £ € D and [ ¢ D. It is easy to observe
that D\ {k,m} is a 20IDS of the tree 7. Therefore v§'(T") < $4(T) — 2.
We now get 1 (T") > (T) — 2 = v$4(T) — 2 > 48(T"). This implies that
% (T") = v$4(T"). By the inductive hypothesis we have 77 € T. The tree T
can be obtained from 7" by operation Oy. Thus T € T.

Now assume that some child of d, say k, is a leaf. Let TV =T — T, — k. Let
D' be a v(T")-set that contains no leaf. By Observation 1 we have w € D'.
The vertex w has to be dominated, thus d € D’. It is easy to observe that
D" U {u,v} is a TDS of the tree T. Thus 1(T) < %(T') + 2. Now let D
be a v§'(T)-set that contains the vertices u and d. By Observation 3 we
have t,z,k € D. The set D is minimal, thus v ¢ D. Let us observe that
D\ {u,t,k} is a 20IDS of the tree T'. Therefore 7§ (T") < v$*(T) — 3. We now
get v(T") > w(T) — 2 =~5(T) — 2 > v$4(T") + 1 > v$(T"), a contradiction.

Now assume that dp(d) = 2. Assume that dp(e) > 3. Let T/ =T — T,.
Let D’ be a v(T")-set. It is easy to observe that D' U{w,u,v} is a TDS of the
tree T. Thus 74 (T) < 1 (T") + 3. Now let D be a ¢ (T)-set that contains the
vertices u and d. By Observation 3 we have t,x € D. The set D is minimal,
thusv,w ¢ D. If e € D, then it is easy to observe that D\{d, u, t, z} is a 20IDS
of the tree T”. Now assume that e ¢ D. Let k be a neighbor of e other than d
and f. The set V(T') \ D is independent, thus f,k € D. Let us observe that
now also D\ {d,u,t,z} is a 20IDS of the tree T as the vertex e has at least
two neighbors in D \ {d, u,t,x}. Therefore 7§ (T") < v$*(T) — 4. We now get
Y (T") > (T) — 3 =~3(T) — 3 > 84(T") + 1 > 75 (T"), a contradiction.

If dr(e) = 1, then it is easy to verify that 1(T) = 4 < 5 = ~§4(T),
a contradiction. Now assume that dp(e) = 2. Let T” be a tree obtained from
T — T, by attaching a vertex, say ¥, by joining it to the vertex f. Let D’ be
a v¢(T")-set that contains no leaf. By Observation 1 we have w, f € D'. The
vertex w has to be dominated, thus d € D’. Let us observe that D'\ {d}U{u, v}



is a TDS of the tree T. Thus 14(T) < v(T") + 1. Now let D be a v§/(T)-
set that contains the vertices u and d. By Observation 3 we have t,z € D.
The set D is minimal, thus v ¢ D. Let us observe that D U {y} \ {u,t}
is a 20IDS of the tree T'. Therefore 7¢/(T") < ~A§4(T) — 1. We now get
W(T") > 3(T) =1 = §(T) — 1 > A8/(T"). This implies that 7 (T’) = 48 (T"),
By the inductive hypothesis we have T € T. The tree T can be obtained
from T” by operation Os. Thus T € T.

If dr(w) = 1, then T = Py. We have y(T) = 2 < 3 = 4¢(T). Now assume
that dr(w) = 2. If dp(d) = 1, then T = Ps. Let T = P3 € T. The tree T
can be obtained from 7" by operation @;. Thus T' € 7. Now assume that
dr(d) = 2, or dr(d) > 3 and there is a child of d other than w, say k, such
that the distance of d to the most distant vertex of T}, is four or two (then
it suffices to consider only the possibilities when T}, is a path Py or Py). Let
T' =T —T,. Similarly as earlier we conclude that v(7T) < v(7”) + 2 and
8H(T') < A8(T) — 2. We now get (T") > (T) — 2 = 8" (T) — 2 > 18(T").
This implies that 1(T") = 7¢%(T"). By the inductive hypothesis we have
T’ € T. The tree T can be obtained from T" by operation Q4. Thus T € T.

Now assume that some child of d, say z, is a leaf. Assume that there
is also another child of d, say k, such that the distance of d to the most
distant vertex of T} is three. It suffices to consider only the possibility when
Ty is a path Ps, say klm. Let T" =T — 2z — m. Let D’ be a v(T")-set that
contains no leaf. By Observation 1 we have k € D’. The vertex k has to be
dominated, thus d € D’. It is easy to observe that D’ U {l} is a TDS of the
tree T. Thus (T) < %(T") + 1. Now let D be a v5*(T)-set that contains
the vertices u and d. By Observation 3 we have x,m € D. Without loss of
generality we assume that [ € D and k ¢ D. Let us observe that D \ {x,m}
is a 20IDS of the tree T'. Therefore v$*(T") < v§Y(T) — 2. We now get
(T > (T) — 1 =~+8(T) — 1 > 484T") + 1 > 7$(T"), a contradiction.

Now assume that dr(d) = 3. Let T” be a tree obtained from T'— T, — x by
attaching a vertex, say y, by joining it to the vertex e. Let D’ be a v(T")-set
that contains no leaf. By Observation 1 we have w,e € D’. The vertex w
has to be dominated, thus d € D’. Let us observe that D'\ {w} U {u,v}
is a TDS of the tree T. Thus v(T) < %(T") + 1. Now let D be a v$*(T)-
set that contains the vertices u and d. By Observation 3 we have ¢,z € D.
The set D is minimal, thus v ¢ D. Let us observe that D U {y} \ {t,z}
is a 20IDS of the tree T'. Therefore v$*(T") < v§4(T) — 1. We now get
Y (T") > (T) — 1 =~5(T) — 1 > ~4§4(T"). This implies that v, (T") = 75 (T").
By the inductive hypothesis we have T" € 7. The tree T can be obtained
from T" by operation Og. Thus T' € T.

Now assume that for every child of d other than w, say k, the distance of d
to the most distant vertex of T} is three, and consequently, T} is a path Ps.
Due to the earlier analysis of the children of the vertex w, we may assume
that dp(d) = 3. Assume that dp(e) > 3. Let 7" =T —T,. Let D' be a (T")-
set. It is easy to observe that D' U {u,v,k,l} is a TDS of the tree T. Thus
%(T) < %(T") + 4. Now let D be a 7§/(T)-set that contains the vertices u
and d. By Observation 3 we have t,m € D. The set D is minimal, thus
v,w ¢ D. Without loss of generality we assume that £k € D and [ ¢ D.



If e € D, then it is easy to observe that D \ {d,u,t, k,m} is a 20IDS of the
tree T'. Now assume that e ¢ D. Let x be a neighbor of e other than d and f.
The set V(T') \ D is independent, thus f,z € D. Let us observe that now also
D\{d,u,t,k,m} is a 20IDS of the tree T". Therefore v5'(T") < v¢/(T)—5. We
now get v (1) > v (T)—4 = 484(T)—4 > v§/(T")+1 > v§(T"), a contradiction.

Now assume that dr(e) = 2. Let T” be a tree obtained from T'—T,, — T} by
attaching a vertex, say y, by joining it to the vertex f. Let D’ be a v(T")-set
that contains no leaf. By Observation 1 we have w, f € D’. The vertex w has
to be dominated, thus d € D’. Let us observe that D"\ {d,w} U {u,v,k,l} is
a TDS of the tree T. Thus 14(T) < 4(T") + 2. Now let D be a v$*(T)-set that
contains the vertices u and d. By Observation 3 we have t,m € D. The set
D is minimal, thus v ¢ D. Without loss of generality we assume that k € D
and [ ¢ D. Let us observe that D U {y} \ {t,k,m} is a 20IDS of the tree 7".
Therefore 5'(T") < 4$4(T) — 2. We now get v(T") > v (T) — 2 = 84(T) — 2
> 4¢Y(T"). This implies that v(T") = 7§(T"). By the inductive hypothesis
we have T” € T. The tree T can be obtained from 7" by operation Os. Thus
TeT. [ ]

As an immediate consequence of Lemmas 5 and 6, we have the following
characterization of the trees with total domination number equal to 2-outer-
independent domination number.

Theorem 7 Let T be a tree. Then v(T) =~5(T) if and only if T € T.
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