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Abstract

For a graph G = (V,E), a subset D ⊆ V (G) is a total dominating set
if every vertex of G has a neighbor in D. The total domination number
of G is the minimum cardinality of a total dominating set of G. A subset
D ⊆ V (G) is a 2-dominating set of G if every vertex of V (G) \D has at
least two neighbors in D, while it is a 2-outer-independent dominating
set of G if additionally the set V (G) \ D is independent. The 2-outer-
independent domination number of G is the minimum cardinality of a 2-
outer-independent dominating set of G. We characterize all trees with
equal total domination and 2-outer-independent domination numbers.
Keywords: total domination, 2-outer-independent domination, 2-domi-
nation, tree.
AMS Subject Classification: 05C05, 05C69.

1 Introduction

Let G = (V,E) be a graph. By the neighborhood of a vertex v of G we mean
the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v, denoted
by dG(v), is the cardinality of its neighborhood. By a leaf we mean a vertex
of degree one, while a support vertex is a vertex adjacent to a leaf. We say
that a support vertex is strong (weak, respectively) if it is adjacent to at least
two leaves (exactly one leaf, respectively). We say that a subset of V (G) is
independent if there is no edge between any two vertices of this set. The path
on n vertices we denote by Pn. Let T be a tree, and let v be a vertex of T .
We say that v is adjacent to a tree H if there is a neighbor of v, say x, such
that the tree resulting from T by removing the edge vx, and which contains
the vertex x, is a tree H. We say that v is adjacent to a path Pn if there is
a neighbor of v, say x, such that the subtree resulting from T by removing the
edge vx and which contains the vertex x as a leaf, is a path Pn. By a star we
mean a connected graph in which exactly one vertex has degree greater than
one.
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A subset D ⊆ V (G) is a dominating set of G if every vertex of V (G) \D
has a neighbor in D, while it is a total dominating set, abbreviated TDS,
of G if every vertex of G has a neighbor in D. The domination (total domi-
nation, respectively) number of G, denoted by γ(G) (γt(G), respectively), is
the minimum cardinality of a dominating (total dominating, respectively) set
of G. A total dominating set of G of minimum cardinality is called a γt(G)-set.
Total domination in graphs was introduced by Cockayne, Dawes, and Hedet-
niemi [6], and further studied for example in [1–3, 6–8, 10, 15, 19, 20]. For
a comprehensive survey of domination in graphs, see [14].
A subset D ⊆ V (G) is a 2-dominating set, abbreviated 2DS, of G if every

vertex of V (G)\D has at least two neighbors in D. The 2-domination number
of G, denoted by γ2(G), is the minimum cardinality of a 2-dominating set of G.
Note that 2-domination is a type of multiple domination in which each vertex,
which is not in the dominating set, is dominated at least k times for a fixed
positive integer k. Multiple domination in graphs was introduced by Fink and
Jacobson [9], and further studied for example in [4, 5, 9, 11, 12, 16, 18].
A subset D ⊆ V (G) is a 2-outer-independent dominating set, abbreviated

2OIDS, of G if every vertex of V (G) \D has at least two neighbors in D and
the set V (G)\D is independent. The 2-outer-independent domination number
of G, denoted by γoi2 (G), is the minimum cardinality of a 2-outer-independent
dominating set of G. A 2-outer-independent dominating set of G of minimum
cardinality is called a γoi2 (G)-set. The study of 2-outer-independent domina-
tion in graphs was initiated in [17].
We characterize all trees with equal total domination and 2-outer-indepen-

dent domination numbers.

2 Results

Since the one-vertex graph does not have a total dominating set, in this paper,
by a tree we mean only a connected graph with no cycle, and which has at
least two vertices.
We begin with the following three straightforward observations.

Observation 1 Every support vertex of a graph G is in every TDS of G.

Observation 2 For every connected graph G of diameter at least three there
exists a γt(G)-set that contains no leaf.

Observation 3 Every leaf of a graph G is in every 2OIDS of G.

We now prove that the 2-outer-independent domination number of any
tree is greater than or equal to its total domination number.

Lemma 4 For every tree T we have γoi2 (T ) ≥ γt(T ).

Proof. Since every 2OIDS of a tree T is a 2DS of this tree, we have γoi2 (T )
≥ γ2(T ). In [13] it is proved that for every tree T we have γ2(T ) ≥ γt(T ). We
now get γoi2 (T ) ≥ γ2(T ) ≥ γt(T ).
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We characterize all trees with equal total domination and 2-outer-indepen-
dent domination numbers. For this purpose we introduce a family T of trees
T = Tk that can be obtained as follows. Let T1 ∈ {P2, P3}. If k is a positive
integer, then Tk+1 can be obtained recursively from Tk by one of the following
operations.

• Operation O1: Attach a path P2 by joining one of its vertices to a vertex
of Tk adjacent to a path P2.

• Operation O2: Attach a path P3 by joining one of its leaves to a vertex
of Tk, which is not a leaf and is adjacent to a path P3 or to a support
vertex.

• Operation O3: Attach a path P5 by joining one of its support vertices to
a vertex of Tk, which is adjacent to a path P2 or to a path P5 through
a support vertex.

• Operation O4: Attach a path P4 by joining one of its leaves to a vertex
of Tk, which is a leaf, or is adjacent to a path P2 or P4 or to a path P5

through a support vertex.

• Operation O5: Let x be a vertex of Tk adjacent to a leaf, say y, and to
a path P4, say abcd. Let a and x be adjacent. Remove the leaf y.
Then either attach a path P3 by joining one of its leaves to the vertex c,
or attach a path P3 by joining one of its leaves to the vertex b and
a path P2 by joining one of its vertices to the vertex d.

• Operation O6: Let x be a support vertex of Tk ̸= P5 adjacent to
a path P3. Remove the path and a leaf adjacent to x, and attach
a path P6 by joining one of its support vertices to the vertex x.

We now prove that for every tree of the family T , the total domination
and the 2-outer-independent domination numbers are equal.

Lemma 5 If T ∈ T , then γt(T ) = γoi2 (T ).

Proof. We use the induction on the number k of operations performed to
construct the tree T . If T = P2, then obviously γt(T ) = 2 = γoi2 (T ). If
T = P3, then also γt(T ) = 2 = γoi2 (T ). Let k be a positive integer. Assume
that the result is true for every tree T ′ = Tk of the family T constructed by
k − 1 operations. Let T = Tk+1 be a tree of the family T constructed by k
operations.
First assume that T is obtained from T ′ by operation O1. The vertex to

which is attached P2 we denote by x. Let v1v2 be the attached path. Let v1 be
joined to x. Let yz be a path P2 adjacent to x and different from v1v2. Let x
and y be adjacent. Let us observe that there exists a γoi2 (T ′)-set that contains
the vertex x. Let D′ be such a set. It is easy to see that D′∪{v2} is a 2OIDS of
the tree T . Thus γoi2 (T ) ≤ γoi2 (T ′)+1. Now let D be a γt(T )-set that contains
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no leaf. By Observation 1 we have v1, y ∈ D. Let us observe that D \ {v1} is
a TDS of the tree T ′ as the vertex x has a neighbor in D \ {v1}. Therefore
γt(T

′) ≤ γt(T ) − 1. We now get γoi2 (T ) ≤ γoi2 (T ′) + 1 = γt(T
′) + 1 ≤ γt(T ).

On the other hand, by Lemma 4 we have γoi2 (T ) ≥ γt(T ). This implies that
γoi2 (T ) = γt(T ).
Now assume that T is obtained from T ′ by operation O2. The vertex to

which is attached P3 we denote by x. Let v1v2v3 be the attached path. Let v1
be joined to x. Let D′ be a γoi2 (T ′)-set. It is easy to observe that D′ ∪{v1, v3}
is a 2OIDS of the tree T . Thus γoi2 (T ) ≤ γoi2 (T ′) + 2. First assume that x is
adjacent to a path P3, say abc. Let a and x be adjacent. Let D be a γt(T )-set
that contains no leaf. By Observation 1 we have v2 ∈ D. Each one of the
vertices v2 and b has to be dominated, thus v1, a ∈ D. Let us observe that
D\{v1, v2} is a TDS of the tree T ′. Now assume that x is adjacent to a support
vertex, say y. Let D be a γt(T )-set that contains no leaf. By Observation 1
we have v2, y ∈ D. The vertex v2 has to be dominated, thus v1 ∈ D. Let us
observe that now also D \ {v1, v2} is a TDS of the tree T ′. We conclude that
γt(T

′) ≤ γt(T ) − 2. We now get γoi2 (T ) ≤ γoi2 (T ′) + 2 = γt(T
′) + 2 ≤ γt(T ).

This implies that γoi2 (T ) = γt(T ).
Now assume that T is obtained from T ′ by operation O3. The vertex to

which is attached P5 we denote by x. Let v1v2v3v4v5 be the attached path. Let
v2 be joined to x. Let y be a support vertex adjacent to x and different from v2.
Let us observe that there exists a γoi2 (T ′)-set that contains the vertex x. Let D′

be such a set. It is easy to observe thatD′∪{v1, v3, v5} is a 2OIDS of the tree T .
Thus γoi2 (T ) ≤ γoi2 (T ′)+3. Now let D be a γt(T )-set that contains no leaf. By
Observation 1 we have v4, v2, y ∈ D. The vertex v4 has to be dominated, thus
v3 ∈ D. Let us observe that D \ {v2, v3, v4} is a TDS of the tree T ′. Therefore
γt(T

′) ≤ γt(T ) − 3. We now get γoi2 (T ) ≤ γoi2 (T ′) + 3 = γt(T
′) + 3 ≤ γt(T ).

This implies that γoi2 (T ) = γt(T ).
Now assume that T is obtained from T ′ by operation O4. The vertex to

which is attached P4 we denote by x. Let v1v2v3v4 be the attached path. Let
v1 be joined to x. Let us observe that there exists a γoi2 (T ′)-set that contains
the vertex x. Let D′ be such a set. It is easy to observe that D′ ∪ {v2, v4} is
a 2OIDS of the tree T . Thus γoi2 (T ) ≤ γoi2 (T ′)+2. Now let us observe that there
exists a γt(T )-set that does not contain the vertices v4 and v1. Let D be such
a set. By Observation 1 we have v3 ∈ D. The vertex v3 has to be dominated,
thus v2 ∈ D. Observe that D \ {v2, v3} is a TDS of the tree T ′. Therefore
γt(T

′) ≤ γt(T ) − 2. We now get γoi2 (T ) ≤ γoi2 (T ′) + 2 = γt(T
′) + 2 ≤ γt(T ).

This implies that γoi2 (T ) = γt(T ).
Now assume that T is obtained from T ′ by operation O5. The attached

path P3 we denote by v1v2v3. Let v1 be joined to b or c. If we also attach
a path P2, then we denote it by v4v5. Let v4 be joined to d. LetD′ be a γoi2 (T ′)-
set that contains the vertices b and x. By Observation 3 we have d, y ∈ D′.
If we only attach a path P3, then let us observe that D′ \ {y} ∪ {v1, v3} is
a 2OIDS of the tree T . If we also attach a path P2, then let us observe that
D′\{y}∪{v1, v3, v5} is a 2OIDS of the tree T . If we only attach a path P3, then
let us observe that there exists a γt(T )-set that does not contain the vertices
v3, d, b and a. Let D be such a set. By Observation 1 we have v2, c ∈ D.
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Each one of the vertices v2 and a has to be dominated, thus v1, x ∈ D. Let
us observe that D ∪ {b} \ {v1, v2} is a TDS of the tree T ′. If we also attach
a path P2, then let us observe that there exists a γt(T )-set that does not
contain the vertices v5, v3, c, b and a. Let D be such a set. By Observation 1
we have v2, v4 ∈ D. Each one of the vertices v2, v4, and a has to be dominated,
thus v1, d, x ∈ D. Let us observe that D∪{b, c}\{v1, v2, d, v4} is a TDS of the
tree T ′. We now conclude that γoi2 (T )+γt(T

′) ≤ γoi2 (T ′)+γt(T ). This implies
that γoi2 (T ) = γt(T ).
Now assume that T is obtained from T ′ by operation O6. The attached

path we denote by v1v2v3v4v5v6. Let v2 be joined to x. Let y be a leaf
adjacent to x, and which is being removed. Let abc denote a path P3 adjacent
to x, and which is being removed. Let a and x be adjacent. Let D′ be
a γoi2 (T ′)-set that contains the vertex a. By Observation 3 we have c, y ∈ D′.
The set D′ is minimal, thus b /∈ D′. If x ∈ D′, then it is easy to observe that
D′\{a, c, y}∪{v1, v2, v4, v6} is a 2OIDS of the tree T . Now assume that x /∈ D′.
Since Tk ̸= P5, the vertex x has at least three neighbors in the tree T ′. Let z
be a neighbor of x other than a and y. We have z ∈ D′ as the set V (T ′) \D′

is independent. Let us observe that now also D′ \ {a, c, y} ∪ {v1, v2, v4, v6} is
a 2OIDS of the tree T . Thus γoi2 (T ) ≤ γoi2 (T ′) + 1. Now let D be a γt(T )-set
that does not contain the vertices v6, v3 and v1. Let D be such a set. By
Observation 3 we have v5, v2 ∈ D. Each one of the vertices v5 and v2 has to
be dominated, thus v4, x ∈ D. Let us observe that D ∪ {a, b} \ {v2, v4, v5}
is a TDS of the tree T ′. Therefore γt(T ′) ≤ γt(T ) − 1. We now get γoi2 (T )
≤ γoi2 (T ′) + 1 = γt(T

′) + 1 ≤ γt(T ). This implies that γoi2 (T ) = γt(T ).

We now prove that if the total domination and the 2-outer-independent
domination numbers of a tree are equal, then the tree belongs to the family T .

Lemma 6 Let T be a tree. If γt(T ) = γoi2 (T ), then T ∈ T .

Proof. If diam(T ) = 1, then T = P2 ∈ T . Now assume that diam(T ) = 2.
Thus T is a star. If T = P3, then T ∈ T . Now assume that T is a star different
from P3. We have γt(T ) = 2 < n− 1 = γoi2 (T ).
Now assume that diam(T ) ≥ 3. Thus the order n of the tree T is at least

four. We obtain the result by the induction on the number n. Assume that
the lemma is true for every tree T ′ of order n′ < n.
First assume that some support vertex of T , say x, is strong. Let y and z be

leaves adjacent to x. Let T ′ = T −y. Let D′ be a γt(T ′)-set. By Observation 1
we have x ∈ D′. It is easy to see that D′ is a TDS of the tree T . Thus
γt(T ) ≤ γt(T

′). Now letD be a γoi2 (T )-set. By Observation 3 we have y, z ∈ D.
If x ∈ D, then it is easy to observe that D \ {y} is a 2OIDS of the tree T ′.
Now assume that x /∈ D. Let k be a neighbor of x other than y and z.
The set V (T ) \D is independent, thus k ∈ D. Let us observe that now also
D \ {y} is a 2OIDS of the tree T ′ as the vertex x has at least two neighbors
in D \ {y}. Therefore γoi2 (T ′) ≤ γoi2 (T ) − 1. We now get γt(T ′) ≥ γt(T )
= γoi2 (T ) ≥ γoi2 (T ′) + 1 > γoi2 (T ′). This is a contradiction as by Lemma 4 we
have γt(T ′) ≤ γoi2 (T ′). Therefore every support vertex of T is weak.
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We now root T at a vertex r of maximum eccentricity diam(T ). Let t
be a leaf at maximum distance from r, v be the parent of t, and u be the
parent of v in the rooted tree. If diam(T ) ≥ 4, then let w be the parent of u.
If diam(T ) ≥ 5, then let d be the parent of w. If diam(T ) ≥ 6, then let e
be the parent of d. If diam(T ) ≥ 7, then let f be the parent of e. By Tx we
denote the subtree induced by a vertex x and its descendants in the rooted
tree T .
Assume that dT (u) ≥ 3. Let x be a child of u other than v. First assume

that x is a leaf. Let T ′ = T − x. Let D′ be a γt(T
′)-set that contains no

leaf. The vertex v has to be dominated, thus u ∈ D′. It is easy to see
that D′ is a TDS of the tree T . Thus γt(T ) ≤ γt(T

′). Now let us observe
that there exists a γoi2 (T )-set that contains the vertex u. Let D be such
a set. By Observation 3 we have x ∈ D. It is easy to observe that D \ {x}
is a 2OIDS of the tree T ′. Therefore γoi2 (T ′) ≤ γoi2 (T ) − 1. We now get
γt(T

′) ≥ γt(T ) = γoi2 (T ) ≥ γoi2 (T ′) + 1 > γoi2 (T ′), a contradiction.
Thus x is a support vertex of degree two. Let T ′ = T − Tv. Let D′

be a γt(T
′)-set that contains no leaf. The vertex x has to be dominated,

thus u ∈ D′. It is easy to see that D′ ∪ {v} is a TDS of the tree T . Thus
γt(T ) ≤ γt(T

′) + 1. Now let us observe that there exists a γoi2 (T )-set that
does not contain the vertex v. Let D be such a set. By Observation 3 we
have t ∈ D. Observe that D \ {t} is a 2OIDS of the tree T ′. Therefore
γoi2 (T ′) ≤ γoi2 (T )− 1. We now get γt(T ′) ≥ γt(T )− 1 = γoi2 (T )− 1 ≥ γoi2 (T ′).
On the other hand, by Lemma 4 we have γt(T ′) ≤ γoi2 (T ′). This implies that
γt(T

′) = γoi2 (T ′). By the inductive hypothesis we have T ′ ∈ T . The tree T
can be obtained from T ′ by operation O1. Thus T ∈ T .
Now assume that dT (u) = 2. First assume that there is a child of w

other than u, say k, such that the distance of w to the most distant vertex
of Tk is three or two. It suffices to consider only the possibilities when Tk

is a path P3 or P2. Let T ′ = T − Tu. Let D′ be a γt(T ′)-set. It is easy to
observe that D′ ∪ {u, v} is a TDS of the tree T . Thus γt(T ) ≤ γt(T

′) + 2.
Now let D be a γoi2 (T )-set that contains the vertex u. By Observation 3
we have t ∈ D. The set D is minimal, thus v /∈ D. If w ∈ D, then it is
easy to observe that D \ {u, t} is a 2OIDS of the tree T ′. Now assume that
w /∈ D. The set V (T ) \D is independent, thus k, d ∈ D. Let us observe that
now also D \ {u, t} is a 2OIDS of the tree T ′ as the vertex w has at least
two neighbors in D \ {u, t}. Therefore γoi2 (T ′) ≤ γoi2 (T ) − 2. We now get
γt(T

′) ≥ γt(T )− 2 = γoi2 (T )− 2 ≥ γoi2 (T ′). This implies that γt(T ′) = γoi2 (T ′).
By the inductive hypothesis we have T ′ ∈ T . The tree T can be obtained
from T ′ by operation O2. Thus T ∈ T .
Now assume that some child of w, say x, is a leaf. We can assume that

dT (w) = 3. First assume that there is a child of d other than w, say k, such
that the distance of d to the most distant vertex of Tk is four or two. It suffices
to consider the possibilities when Tk is isomorphic to Tw, or Tk is a path P4

or P2. First assume that Tk is isomorphic to Tw, or Tk is a path P2. Let
T ′ = T −Tw. Let D′ be a γt(T ′)-set. It is easy to observe that D′∪{w, u, v} is
a TDS of the tree T . Thus γt(T ) ≤ γt(T

′)+3. Now let D be a γoi2 (T )-set that
does not contain the vertices v and w. By Observation 3 we have t, x ∈ D.
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The vertex u has no neighbor in D, thus u ∈ D. Observe that D \ {u, t, x}
is a 2OIDS of the tree T ′. Therefore γoi2 (T ′) ≤ γoi2 (T ) − 3. We now get
γt(T

′) ≥ γt(T )− 3 = γoi2 (T )− 3 ≥ γoi2 (T ′). This implies that γt(T ′) = γoi2 (T ′).
By the inductive hypothesis we have T ′ ∈ T . The tree T can be obtained
from T ′ by operation O3. Thus T ∈ T .
Now assume that Tk is a path P4, say klmp. Let T ′ = T − Tk. Let D′

be a γt(T ′)-set. It is easy to observe that D′ ∪ {l,m} is a TDS of the tree T .
Thus γt(T ) ≤ γt(T

′) + 2. Now let D be a γoi2 (T )-set that does not contain
the vertices m and k. By Observation 3 we have p ∈ D. The vertex l has no
neighbor in D, thus l ∈ D. Observe that D \ {l, p} is a 2OIDS of the tree T ′.
Therefore γoi2 (T ′) ≤ γoi2 (T ) − 2. We now get γt(T ′) ≥ γt(T ) − 2 = γoi2 (T ) − 2
≥ γoi2 (T ′). This implies that γt(T ′) = γoi2 (T ′). By the inductive hypothesis
we have T ′ ∈ T . The tree T can be obtained from T ′ by operation O4. Thus
T ∈ T .
Now assume that there is a child of d, say k, such that the distance of d

to the most distant vertex of Tk is three. It suffices to consider only the
possibility when Tk is a path P3, say klm. Let T ′ = T − Tk. Similarly as
earlier we conclude that γt(T ) ≤ γt(T

′) + 2. Now let D be a γoi2 (T )-set that
contains the vertices u and d. By Observation 3 we have m ∈ D. Without
loss of generality we assume that k ∈ D and l /∈ D. It is easy to observe
that D \ {k,m} is a 2OIDS of the tree T ′. Therefore γoi2 (T ′) ≤ γoi2 (T ) − 2.
We now get γt(T ′) ≥ γt(T ) − 2 = γoi2 (T ) − 2 ≥ γoi2 (T ′). This implies that
γt(T

′) = γoi2 (T ′). By the inductive hypothesis we have T ′ ∈ T . The tree T
can be obtained from T ′ by operation O2. Thus T ∈ T .
Now assume that some child of d, say k, is a leaf. Let T ′ = T −Tu−k. Let

D′ be a γt(T ′)-set that contains no leaf. By Observation 1 we have w ∈ D′.
The vertex w has to be dominated, thus d ∈ D′. It is easy to observe that
D′ ∪ {u, v} is a TDS of the tree T . Thus γt(T ) ≤ γt(T

′) + 2. Now let D
be a γoi2 (T )-set that contains the vertices u and d. By Observation 3 we
have t, x, k ∈ D. The set D is minimal, thus v /∈ D. Let us observe that
D\{u, t, k} is a 2OIDS of the tree T ′. Therefore γoi2 (T ′) ≤ γoi2 (T )−3. We now
get γt(T ′) ≥ γt(T )− 2 = γoi2 (T )− 2 ≥ γoi2 (T ′) + 1 > γoi2 (T ′), a contradiction.
Now assume that dT (d) = 2. Assume that dT (e) ≥ 3. Let T ′ = T − Td.

Let D′ be a γt(T ′)-set. It is easy to observe that D′∪{w, u, v} is a TDS of the
tree T . Thus γt(T ) ≤ γt(T

′) + 3. Now let D be a γoi2 (T )-set that contains the
vertices u and d. By Observation 3 we have t, x ∈ D. The set D is minimal,
thus v, w /∈ D. If e ∈ D, then it is easy to observe thatD\{d, u, t, x} is a 2OIDS
of the tree T ′. Now assume that e /∈ D. Let k be a neighbor of e other than d
and f . The set V (T ) \D is independent, thus f, k ∈ D. Let us observe that
now also D \ {d, u, t, x} is a 2OIDS of the tree T ′ as the vertex e has at least
two neighbors in D \ {d, u, t, x}. Therefore γoi2 (T ′) ≤ γoi2 (T )− 4. We now get
γt(T

′) ≥ γt(T )− 3 = γoi2 (T )− 3 ≥ γoi2 (T ′) + 1 > γoi2 (T ′), a contradiction.
If dT (e) = 1, then it is easy to verify that γt(T ) = 4 < 5 = γoi2 (T ),

a contradiction. Now assume that dT (e) = 2. Let T ′ be a tree obtained from
T − Tu by attaching a vertex, say y, by joining it to the vertex f . Let D′ be
a γt(T ′)-set that contains no leaf. By Observation 1 we have w, f ∈ D′. The
vertex w has to be dominated, thus d ∈ D′. Let us observe thatD′\{d}∪{u, v}
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is a TDS of the tree T . Thus γt(T ) ≤ γt(T
′) + 1. Now let D be a γoi2 (T )-

set that contains the vertices u and d. By Observation 3 we have t, x ∈ D.
The set D is minimal, thus v /∈ D. Let us observe that D ∪ {y} \ {u, t}
is a 2OIDS of the tree T ′. Therefore γoi2 (T ′) ≤ γoi2 (T ) − 1. We now get
γt(T

′) ≥ γt(T )− 1 = γoi2 (T )− 1 ≥ γoi2 (T ′). This implies that γt(T ′) = γoi2 (T ′).
By the inductive hypothesis we have T ′ ∈ T . The tree T can be obtained
from T ′ by operation O5. Thus T ∈ T .
If dT (w) = 1, then T = P4. We have γt(T ) = 2 < 3 = γoi2 (T ). Now assume

that dT (w) = 2. If dT (d) = 1, then T = P5. Let T ′ = P3 ∈ T . The tree T
can be obtained from T ′ by operation O1. Thus T ∈ T . Now assume that
dT (d) = 2, or dT (d) ≥ 3 and there is a child of d other than w, say k, such
that the distance of d to the most distant vertex of Tk is four or two (then
it suffices to consider only the possibilities when Tk is a path P4 or P2). Let
T ′ = T − Tw. Similarly as earlier we conclude that γt(T ) ≤ γt(T

′) + 2 and
γoi2 (T ′) ≤ γoi2 (T )− 2. We now get γt(T ′) ≥ γt(T )− 2 = γoi2 (T )− 2 ≥ γoi2 (T ′).
This implies that γt(T ′) = γoi2 (T ′). By the inductive hypothesis we have
T ′ ∈ T . The tree T can be obtained from T ′ by operation O4. Thus T ∈ T .
Now assume that some child of d, say x, is a leaf. Assume that there

is also another child of d, say k, such that the distance of d to the most
distant vertex of Tk is three. It suffices to consider only the possibility when
Tk is a path P3, say klm. Let T ′ = T − x − m. Let D′ be a γt(T ′)-set that
contains no leaf. By Observation 1 we have k ∈ D′. The vertex k has to be
dominated, thus d ∈ D′. It is easy to observe that D′ ∪ {l} is a TDS of the
tree T . Thus γt(T ) ≤ γt(T

′) + 1. Now let D be a γoi2 (T )-set that contains
the vertices u and d. By Observation 3 we have x,m ∈ D. Without loss of
generality we assume that l ∈ D and k /∈ D. Let us observe that D \ {x,m}
is a 2OIDS of the tree T ′. Therefore γoi2 (T ′) ≤ γoi2 (T ) − 2. We now get
γt(T

′) ≥ γt(T )− 1 = γoi2 (T )− 1 ≥ γoi2 (T ′) + 1 > γoi2 (T ′), a contradiction.
Now assume that dT (d) = 3. Let T ′ be a tree obtained from T −Tv −x by

attaching a vertex, say y, by joining it to the vertex e. Let D′ be a γt(T ′)-set
that contains no leaf. By Observation 1 we have w, e ∈ D′. The vertex w
has to be dominated, thus d ∈ D′. Let us observe that D′ \ {w} ∪ {u, v}
is a TDS of the tree T . Thus γt(T ) ≤ γt(T

′) + 1. Now let D be a γoi2 (T )-
set that contains the vertices u and d. By Observation 3 we have t, x ∈ D.
The set D is minimal, thus v /∈ D. Let us observe that D ∪ {y} \ {t, x}
is a 2OIDS of the tree T ′. Therefore γoi2 (T ′) ≤ γoi2 (T ) − 1. We now get
γt(T

′) ≥ γt(T )− 1 = γoi2 (T )− 1 ≥ γoi2 (T ′). This implies that γt(T ′) = γoi2 (T ′).
By the inductive hypothesis we have T ′ ∈ T . The tree T can be obtained
from T ′ by operation O6. Thus T ∈ T .
Now assume that for every child of d other than w, say k, the distance of d

to the most distant vertex of Tk is three, and consequently, Tk is a path P3.
Due to the earlier analysis of the children of the vertex w, we may assume
that dT (d) = 3. Assume that dT (e) ≥ 3. Let T ′ = T −Td. Let D′ be a γt(T ′)-
set. It is easy to observe that D′ ∪ {u, v, k, l} is a TDS of the tree T . Thus
γt(T ) ≤ γt(T

′) + 4. Now let D be a γoi2 (T )-set that contains the vertices u
and d. By Observation 3 we have t,m ∈ D. The set D is minimal, thus
v, w /∈ D. Without loss of generality we assume that k ∈ D and l /∈ D.
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If e ∈ D, then it is easy to observe that D \ {d, u, t, k,m} is a 2OIDS of the
tree T ′. Now assume that e /∈ D. Let x be a neighbor of e other than d and f .
The set V (T ) \D is independent, thus f, x ∈ D. Let us observe that now also
D\{d, u, t, k,m} is a 2OIDS of the tree T ′. Therefore γoi2 (T ′) ≤ γoi2 (T )−5. We
now get γt(T ′) ≥ γt(T )−4 = γoi2 (T )−4 ≥ γoi2 (T ′)+1 > γoi2 (T ′), a contradiction.
Now assume that dT (e) = 2. Let T ′ be a tree obtained from T −Tv−Tk by

attaching a vertex, say y, by joining it to the vertex f . Let D′ be a γt(T ′)-set
that contains no leaf. By Observation 1 we have w, f ∈ D′. The vertex w has
to be dominated, thus d ∈ D′. Let us observe that D′ \ {d,w} ∪ {u, v, k, l} is
a TDS of the tree T . Thus γt(T ) ≤ γt(T

′)+2. Now let D be a γoi2 (T )-set that
contains the vertices u and d. By Observation 3 we have t,m ∈ D. The set
D is minimal, thus v /∈ D. Without loss of generality we assume that k ∈ D
and l /∈ D. Let us observe that D ∪ {y} \ {t, k,m} is a 2OIDS of the tree T ′.
Therefore γoi2 (T ′) ≤ γoi2 (T ) − 2. We now get γt(T ′) ≥ γt(T ) − 2 = γoi2 (T ) − 2
≥ γoi2 (T ′). This implies that γt(T ′) = γoi2 (T ′). By the inductive hypothesis
we have T ′ ∈ T . The tree T can be obtained from T ′ by operation O5. Thus
T ∈ T .

As an immediate consequence of Lemmas 5 and 6, we have the following
characterization of the trees with total domination number equal to 2-outer-
independent domination number.

Theorem 7 Let T be a tree. Then γt(T ) = γoi2 (T ) if and only if T ∈ T .
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