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Abstract

A Roman dominating function (RDF) on a graph G is a function
f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which
f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight
of a Roman dominating function f is the value f(V (G)) =

∑
v∈V (G) f(v).

The Roman domination number of G, denoted by γR(G), is the minimum
weight of an RDF on G. For a given graph, a Roman dominating func-
tion f = (V0, V1, V2) is a restrained Roman dominating function (rRDF) if
every vertex of V0 has a neighbor in V0. The restrained Roman domina-
tion number of G, denoted by γrR(G), is the minimum weight of an rRDF
on G. We first show that the restrained Roman domination problem is
NP-complete. Then we give various bounds and characterizations. Finally
we study restrained Roman domination in random graphs.
Keywords: Roman domination, restrained Roman domination, complex-
ity, probabilistic method, random graph.
AMS Subject Classification: 05C05, 05C69.

1 Introduction

Let G = (V,E) be a graph. By the neighborhood of a vertex v of G we mean
the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v, denoted
by dG(v), is the cardinality of its neighborhood. By a leaf we mean a vertex
of degree one, while a support vertex is a vertex adjacent to a leaf. We say
that a support vertex is strong (weak, respectively) if it is adjacent to at least
two leaves (exactly one leaf, respectively). The distance between two vertices
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of a graph is the number of edges in a shortest path connecting them. The ec-
centricity of a vertex is the greatest distance between it and any other vertex.
The diameter of a graph G, denoted by diam(G), is the maximum eccentricity
among all vertices of G. The complete graph on n vertices we denote by Kn.
The path (cycle, respectively) on n vertices we denote by Pn (Cn, respectively).
Let T be a tree, and let v be a vertex of T . We say that v is adjacent to a path Pn

if there is a neighbor of v, say x, such that the subtree resulting from T by remov-
ing the edge vx and which contains the vertex x as a leaf, is a path Pn. By a star
we mean a connected graph in which exactly one vertex has degree greater than
one. Double star is a graph obtained from a star by joining a positive number
of vertices to one of the leaves.
A subset D ⊆ V (G) is a dominating set of G if every vertex of V (G) \D has

a neighbor in D, while it is a restrained dominating set of G if additionally every
vertex of V (G)\D has a neighbor in V (G)\D. The domination (restrained dom-
ination, respectively) number of G, denoted by γ(G) (γr(G), respectively), is the
minimum cardinality of a dominating (restrained dominating, respectively) set
of G. Restrained domination in graphs was introduced by Telle and Proskurowski
[19], albeit indirectly, as vertex partitioning problem, and was further studied for
example in [4–7, 9, 10, 12, 22]. For a comprehensive survey of domination in
graphs, see [11].
For a graph G, let f : V (G) → {0, 1, 2} be a function, and let (V0, V1, V2) be

the ordered partition of V (G) induced by f , where Vi = {v ∈ V (G) : f(v) = i}
and |Vi| = ni, for i = 0, 1, 2. There is a 1−1 correspondence between the functions
f : V (G) → {0, 1, 2} and the ordered partitions (V0, V1, V2) of V (G). Thus we will
write f = (V0, V1, V2) to refer to f . A function f : V (G) → {0, 1, 2} is a Roman
dominating function, or just RDF, if every vertex v for which f(v) = 0, is adjacent
to at least one vertex u for which f(u) = 2. The weight of an RDF is the value
f(V (G)) =

∑
v∈V (G) f(v). The Roman domination number of a graph G, denoted

by γR(G), is the minimum weight of an RDF on G. A function f = (V0, V1, V2) is
called a γR(G)-function if it is an RDF on G and f(V (G)) = γR(G). The concept
of Roman domination in graphs was introduced by Stewart [18], and further
studied for example in [3, 8, 13, 15, 16, 21].
As noted in [3], the idea of considering a Roman dominating function is that

the assignments 1 and 2 represent either one or two Roman legions stationed at
a given location (vertex v). A nearby location (an adjacent vertex u) is considered
to be unsecured if no legions are stationed there (i.e. f(u) = 0). One can consider
this idea with a further condition that any unsecured location is also adjacent to
at least one unsecured location. Pushpam and Padmapriea [17] introduced the
concept of restrained Roman domination in graphs. An RDF f = (V0, V1, V2)
on a graph G is a restrained Roman dominating function, or just rRDF, on G
if every vertex of V0 has a neighbor in V0. The restrained Roman domination
number of G, denoted by γrR(G), is the minimum weight of an rRDF on G.
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A function f = (V0, V1, V2) is called a γrR(G)-function if it is an rRDF on G and
f(V (G)) = γrR(G).
We present different bounds and characterizations for the restrained Roman

domination number of a graph, and study restrained Roman domination in ran-
dom graphs. In Section 2, we show that the restrained Roman domination prob-
lem is NP-complete for general graphs. In Section 3, we present different bounds
and characterizations for the restrained Roman domination number. Finally
in Section 4, we study restrained Roman domination in random graphs.

2 Complexity

In this section we prove that the restrained Roman domination decision problem
is NP-complete. We shall prove the NP-completeness by reducing the following
vertex cover decision problem, which is known to be NP-complete.

VERTEX COVER DECISION PROBLEM
INSTANCE: A graph G = (V,E) and a positive integer k ≤ |V (G)|.
QUESTION: Does there exist a subset C ⊆ V (G) of size at most k such that

for each edge xy ∈ E(G) we have x ∈ C or y ∈ C?

Theorem 1 (Karp [14]) Vertex cover decision problem is NP-complete for gen-
eral graphs.

RESTRAINED ROMAN DOMINATION PROBLEM
INSTANCE: A graph G = (V,E) and a positive integer k ≤ |V (G)|.
QUESTION: Does there exist a restrained Roman dominating function for G

with weight at most k?

Theorem 2 The restrained Roman domination problem is NP-complete for gen-
eral graphs.

Proof. We transform the vertex cover decision problem for general graphs to the
restrained Roman domination decision problem for general graphs. For a given
graph G = (V,E), let s = 3|V (G)| + 4 and construct a graph H = (V1, E1) as
follows. Let V1 = {xi : 1 ≤ i ≤ s} ∪ {y} ∪ V (G) ∪ {ei : e ∈ E, 1 ≤ i ≤ s}, and let

E1 = {x1xs} ∪ {yv : v ∈ V }
∪{xixi+1 : 1 ≤ i ≤ s− 1}
∪{xiy : 1 ≤ i ≤ s}
∪{vei : v ∈ e, e ∈ E, 1 ≤ i ≤ s}
∪{eiei+1(mod s) : v ∈ e, e ∈ E, 1 ≤ i ≤ s}.
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Figure 1 shows the graph H obtained from G = P3 by the above procedure.
Note that

H[{xi : 1 ≤ i ≤ 13}] ∼= H[{ej : 1 ≤ j ≤ 13}] ∼= H[{fl : 1 ≤ l ≤ 13}] ∼= C13,

y is adjacent to xi for i = 1, 2, . . . , 13, ej is adjacent to both a and b for j
= 1, 2, . . . , 13, and fl is adjacent to both b and c for l = 1, 2, . . . , 13.
We claim that G has a vertex cover of size at most k if and only if H has

an rRDF with weight at most 2k+2. Hence the NP-completeness of the restrained
Roman domination problem in general graphs follows from that of the vertex
cover problem. First, if G has a vertex cover C of size at most k, then the
function f defined on V1 by f(v) = 2 for v ∈ C ∪ {y} and f(v) = 0 otherwise,
is an rRDF with weight at most 2k + 2. On the other hand, suppose that H has
an rRDF g with weight at most 2k + 2. If g(y) ̸= 2, then

s∑
i=1

g(xi) ≥ γrR(Cs) ≥ γR(Cs) ≥
2s

3
> 2|V (G)|+ 2 ≥ 2k + 2,

which is a contradiction. Thus g(y) = 2. Similarly, we have g(u) = 2 or g(v) = 2
for any e = uv ∈ E. Therefore C = {v ∈ V : g(v) = 2} is a vertex cover of G and
2|C|+ 2 ≤ w(g) ≤ 2k + 2. Consequently, |C| ≤ k.

a
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f
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x1

x13
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a

e13
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c

H

Figure 1: The graphs G = P3 and H

3 Bounds on the restrained Roman domination
number of a graph

In this section we present different bounds and characterizations concerning the
restrained Roman domination number.
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3.1 Trees

We prove that for every nontrivial tree T of diameter at least three, order n,
with l leaves and s support vertices, we have γrR(T ) ≥ (2n+ l−s+4)/3. For the
purpose of characterizing the trees attaining this bound we introduce a family T
of trees T = Tk that can be obtained as follows. Let T1 ∈ {P4, P5, P6}. If k is
a positive integer, then Tk+1 can be obtained recursively from Tk by one of the
following operations.

• Operation O1: Attach a vertex by joining it to any support vertex of Tk.

• Operation O2: Attach a path P3 by joining one of its leaves to a vertex
of Tk adjacent to a path P3.

• Operation O3: Attach a path P3 by joining one of its leaves to a leaf of Tk

adjacent to a weak support vertex.

We now prove a lower bound on the restrained Roman domination number
of a tree. We also prove that for the equality to be satisfied, the tree must belong
to the family T .

Lemma 3 For every tree T of diameter at least three, order n, with l leaves and
s support vertices, we have γrR(T ) ≥ (2n + l − s + 4)/3, and if the equality is
satisfied, then T ∈ T .

Proof. First assume that diam(T ) = 3. Thus T is a double star. We have
(2n + l − s + 4)/3 = (2n + n − 2 − 2 + 4)/3 = n = γrR(T ). If T = P4, then
T ∈ T . If T is a double star different from P4, then it can be obtained P4 by
appropriate numbers of operations O1 performed on the support vertices. Thus
T ∈ T . Now assume that diam(T ) ≥ 4. Thus the order n of the tree T is at
least five. The result we obtain by the induction on the number n. Assume that
the lemma is true for every tree T ′ of order n′ < n with l′ leaves and s′ support
vertices.
Let f = (V0, V1, V2) be a γrR(T )-function. First assume that some support

vertex of T , say x, is strong. Let y and z be leaves adjacent to x. Let T ′ = T −y.
We have n′ = n − 1, l′ = l − 1 and s′ = s. Clearly, we have y, z ∈ V1 ∪ V2.
The function f is minimum, thus f(y) ̸= 2 or f(z) ̸= 2. Without loss of generality
we assume that f(y) = 1. It is easy to observe that f |V (T ′) is an rRDF for the
tree T ′. Therefore γrR(T ′) ≤ γrR(T ) − 1. We now get γrR(T ) ≥ γrR(T

′) + 1
≥ (2n′ + l′ − s′ + 4)/3 + 1 = (2n − 2 + l − 1 − s + 7)/3 = (2n + l − s + 4)/3.
If γrR(T ) = (2n + l − s + 4)/3, then obviously γrR(T ′) = (2n′ + l′ − s′ + 4)/3.
By the inductive hypothesis we have T ′ ∈ T . The tree T can be obtained from T ′

by operation O1. Thus T ∈ T . Henceforth, we can assume that every support
vertex of T is weak.
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We now root T at a vertex r of maximum eccentricity diam(T ). Let t be a leaf
at maximum distance from r, v be the parent of t, u be the parent of v, and w
be the parent of u in the rooted tree. By Tx we denote the subtree induced by
a vertex x and its descendants in the rooted tree T .
Clearly, t ∈ V1 ∪ V2. Assume that v /∈ V0. Then f(t) = 1 as the function f is

minimum. Let T ′ = T−t. We have n′ = n−1, l′ = l and s′ ∈ {s−1, s}. It is easy
to observe that f |V (T ′) is an rRDF for the tree T ′. Therefore γrR(T ′) ≤ γrR(T )−1.
We now get γrR(T ) ≥ γrR(T

′)+1 ≥ (2n′+ l′−s′+4)/3+1 ≥ (2n−2+ l−s+7)/3
= (2n + l − s + 5)/3 > (2n + l − s + 4)/3. Thus we can assume that f(v) = 0,
and consequently, f(u) = 0 and f(t) = 2.
Assume that among the children of u there is a support vertex, say x, other

than v. The leaf adjacent to x we denote by y. Let T ′ = T − Tv. We have
n′ = n − 2, l′ = l − 1 and s′ = s − 1. Because of the similarity of the subtrees
Tv and Tx, we can assume that f(x) = 0 and f(y) = 2. Observe that f |V (T ′)

is an rRDF for the tree T ′. Therefore γrR(T
′) ≤ γrR(T ) − 2. We now get

γrR(T ) ≥ γrR(T
′) + 2 ≥ (2n′ + l′ − s′ +4)/3+ 2 = (2n− 4+ l− 1− s+1+ 10)/3

= (2n+ l − s+ 6)/3 > (2n+ l − s+ 4)/3.
Now assume that some child of u, say x, is a leaf. Clearly, f(x) ̸= 0. Let

T ′ = T − x. We have n′ = n − 1, l′ = l − 1 and s′ = s − 1. If f(x) = 1,
then obviously f |V (T ′) is an rRDF for the tree T ′. Now assume that f(x) = 2.
We have f(w) ∈ {0, 1}, otherwise we can change the value of f(x) from 2 to 1,
a contradiction to the minimality of f . If f(w) = 1, then let us observe that f |V (T ′)

with the modification that f(w) = 2, is an rRDF for the tree T ′. We now conclude
that γrR(T ′) ≤ γrR(T )−1. We get γrR(T ) ≥ γrR(T

′)+1 ≥ (2n′+ l′−s′+4)/3+1
= (2n−2+l−1−s+1+7)/3 = (2n+l−s+5)/3 > (2n+l−s+4)/3. Now assume
that f(w) = 0. Let T ′′ = T − Tv. We have n′′ = n− 2, l′′ = l− 1 and s′′ = s− 1.
Observe that f |V (T ′′) is an rRDF for the tree T ′′. Therefore γrR(T ′′) ≤ γrR(T )−2.
We now get γrR(T ) ≥ γrR(T

′′) + 2 ≥ (2n′′ + l′′ − s′′ + 4)/3 + 2 ≥ (2n − 4 + l
−1− s+ 1 + 10)/3 = (2n+ l − s+ 6)/3 > (2n+ l − s+ 4)/3.
Now assume that dT (u) = 2. Thus f(w) = 2. First assume that there is a child

of w other than u, say x, such that the distance of w to the most distant vertex
of Tx is three. It suffices to consider only the possibility when Tx is a path P3.
Let T ′ = T − Tu. We have n′ = n − 3, l′ = l − 1 and s′ = s − 1. Observe
that f |V (T ′) is an rRDF for the tree T ′. Therefore γrR(T ′) ≤ γrR(T ) − 2. We
now get γrR(T ) ≥ γrR(T

′) + 2 ≥ (2n′ + l′ − s′ + 4)/3 + 2 = (2n − 6 + l − 1
−s+1+10)/3 = (2n+ l−s+4)/3. If γrR(T ) = (2n+ l−s+4)/3, then obviously
γrR(T

′) = (2n′ + l′ − s′ + 4)/3. By the inductive hypothesis we have T ′ ∈ T .
The tree T can be obtained from T ′ by operation O2. Thus T ∈ T .
Now assume that there is a child of w, say x, such that the distance of w to the

most distant vertex of Tx is two. Thus x is a support vertex of degree two. The
leaf adjacent to x we denote by y. Let T ′ = T −Tx. We have n′ = n−2, l′ = l−1
and s′ = s− 1. Let us observe that f(x) = 1 and f(y) = 1. It is easy to see that
f |V (T ′) is an rRDF for the tree T ′. Therefore γrR(T ′) ≤ γrR(T )− 2. We now get
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γrR(T ) ≥ γrR(T
′) + 2 ≥ (2n′ + l′ − s′ +4)/3+ 2 = (2n− 4+ l− 1− s+1+ 10)/3

= (2n+ l − s+ 6)/3 > (2n+ l − s+ 4)/3.
Now assume that some child of w, say x, is a leaf. Let T ′ = T − x. We

have n′ = n − 1, l′ = l − 1 and s′ = s − 1. Notice that f(x) = 1. Clearly,
f |V (T ′) is an rRDF for the tree T ′. Therefore γrR(T ′) ≤ γrR(T )− 1. We now get
γrR(T ) ≥ γrR(T

′) + 1 ≥ (2n′ + l′ − s′ + 4)/3 + 1 = (2n− 2 + l− 1− s+ 1+ 7)/3
= (2n+ l − s+ 5)/3 > (2n+ l − s+ 4)/3.
Now assume that dT (w) = 2. First assume that some child of d, say x, is

a leaf. Let T ′ = T − x. We have n′ = n − 1, l′ = l − 1 and s′ = s − 1. Notice
that f(x) = 1. It is easy to see that f |V (T ′) is an rRDF for the tree T ′. Therefore
γrR(T

′) ≤ γrR(T )−1. We now get γrR(T ) ≥ γrR(T
′)+1 ≥ (2n′+ l′−s′+4)/3+1

= (2n− 2 + l − 1− s+ 1 + 7)/3 = (2n+ l − s+ 5)/3 > (2n+ l − s+ 4)/3.
Now assume that no child of d is a leaf. Let T ′ = T −Tu. We have n′ = n−3,

l′ = l and s′ = s. If diam(T ′) ∈ {1, 2}, then T ′ ∈ {P2, P3} and T ∈ {P5, P6} ⊆ T .
Now assume that diam(T ′) ≥ 3. Observe that f |V (T ′) is an rRDF for the tree T ′.
Therefore γrR(T ′) ≤ γrR(T )−2. We now get γrR(T ) ≥ γrR(T

′)+2 ≥ (2n′+ l′−s′

+4)/3+2 ≥ (2n−6+l−s+10)/3 = (2n+l−s+4)/3. If γrR(T ) = (2n+l−s+4)/3,
then obviously γrR(T ′) = (2n′ + l′ − s′ + 4)/3. By the inductive hypothesis we
have T ′ ∈ T . The tree T can be obtained from T ′ by operation O3. Thus T ∈ T .

We have the following necessary condition for that a tree T satisfies the equal-
ity of the lower bound of (2n+ l− s+4)/3 on the restrained Roman domination
number.

Lemma 4 Let T be a tree. If γrR(T ) = (2n+ l − s+ 4)/3, then for every leaf x
of T , there is a γrR(T )-function f that assigns the value 2 to the vertex x.

Proof. The neighbor of x we denote by y. Suppose that for every γrR(T )-
function f we have f(x) = 1. Let T ′ = T −x. It is easy to observe that f |V (T ′) is
an rRDF for the tree T ′. Therefore γrR(T ′) ≤ γrR(T )−1. If y is a strong support
vertex, then n′ = n− 1, l′ = l − 1 and s′ = s. We now get γrR(T ) ≥ γrR(T

′) + 1
≥ (2n′+ l′−s′+4)/3+1 = (2n−2+ l−1−s+7)/3 = (2n+ l−s+4)/3. After an
appropriate number of analogical steps, we get a tree in which y is a weak support
vertex. Thus we now assume that y is a weak support vertex. Then n′ = n− 1,
l′ = l−1 and s′ = s−1. We now get γrR(T ) ≥ γrR(T

′)+1 ≥ (2n′+l′−s′+4)/3+1
= (2n−2+l−1−s+1+7)/3 = (2n+l−s+5)/3 > (2n+l−s+4)/3, a contradiction.

We now prove that for every tree T of the family T we have γrR(T ) = (2n+ l
−s+ 4)/3.

Lemma 5 If T ∈ T , then γrR(T ) = (2n+ l − s+ 4)/3.
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Proof. We use the induction on the number k of operations performed to
construct the tree T . If T ∈ {P4, P5, P6}, then we have (2n + l − s + 4)/3
= (2n + n − 2 − 2 + 4)/3 = n = γrR(T ). Let k be a positive integer. Assume
that the result is true for every tree T ′ = Tk of the family T constructed by
k − 1 operations. Let n′ be the order of the tree T ′, l′ the number of its leaves
and s′ the number of support vertices. Let T = Tk+1 be a tree of the family T
constructed by k operations.
First assume that T is obtained from T ′ by operation O1. We have n = n′+1,

l = l′ + 1 and s = s′. Let x be the attached vertex. Let f ′ = (V0, V1, V2)
be a γrR(T

′)-function. It is easy to see that extending f ′ by f ′(x) = 1 gives
us an rRDF for the tree T . Thus γrR(T ) ≤ γrR(T

′) + 1. We now get γrR(T )
≤ γrR(T

′)+1 = (2n′+l′−s′+4)/3+1 = (2n−2+l−1−s+7)/3 = (2n+l−s+4)/3.
On the other hand, by Lemma 3 we have γrR(T ) ≥ (2n+l−s+4)/3. This implies
that γrR(T ) = (2n+ l − s+ 4)/3.
Now assume that T is obtained from T ′ by operation O2. We have n = n′+3,

l = l′ + 1 and s = s′ + 1. The vertex to which is attached P3 we denote by x.
Let v1v2v3 be the attached path. Let v1 be joined to x. Let abc denote a path P3

adjacent to x and different from v1v2v3. Let a and x be adjacent. By Lemma 4,
there is a γrR(T

′)-function f ′ such that f ′(c) = 2. Consequently, f ′(b) = 0,
f ′(a) = 0 and f ′(x) = 2. It is easy to observe that extending f ′ by letting v1
and v2 have the weight 0 and v3 the weight 2, we get an rRDF for the tree T .
Thus γrR(T ) ≤ γrR(T

′) + 2. We now get γrR(T ) ≤ γrR(T
′) + 2 = (2n′ + l′ − s′

+4)/3 + 2 = (2n − 6 + l − 1 − s + 1 + 10)/3 = (2n + l − s + 4)/3. This implies
that γrR(T ) = (2n+ l − s+ 4)/3.
Now assume that T is obtained from T ′ by operation O3. We have n = n′+3,

l = l′ and s = s′. The leaf to which is attached P3 we denote by x. Let
v1v2v3 be the attached path. Let v1 be joined to x. By Lemma 4, there is
a γrR(T ′)-function f ′ such that f ′(x) = 2. It is easy to observe that extending
f ′ by f ′(v1) = 0, f ′(v2) = 0 and f ′(v3) = 2, we get an rRDF for the tree T .
Thus γrR(T ) ≤ γrR(T

′) + 2. We now get γrR(T ) ≤ γrR(T
′) + 2 = (2n′ + l′ − s′

+4)/3 + 2 = (2n − 6 + l − s + 10)/3 = (2n + l − s + 4)/3. This implies that
γrR(T ) = (2n+ l − s+ 4)/3.

As an immediate consequence of Lemmas 3 and 5, we get the following lower
bound on the restrained Roman domination number of a tree together with the
characterization of the extremal trees.

Theorem 6 For every tree T of diameter at least three, order n, with l leaves
and s support vertices, we have γrR(T ) ≥ (2n+ l− s+ 4)/3, with equality if and
only if T ∈ T .
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3.2 General graphs

Pushpam et al. [17] determined the restrained Roman domination number of paths
and cycles by considering different cases of n modulo 3. We first show the fol-
lowing property of graphs in which some vertex is neither a leaf nor a support
vertex.

Proposition 7 If a graph G has an edge non-incident with a leaf, then there is
a γrR(G)-function f = (V0, V1, V2) such that V0 ̸= ∅.

Proof. The result is obvious if γrR(G) < n. Thus assume that γrR(G) = n.
Let xy be an edge of G such that dG(x) ≥ 2 and dG(y) ≥ 2. If NG(x) ∩ NG(y)
̸= ∅, then let a be a common neighbor of x and y. Observe that ({x, y}, V (G)
\{x, y, a}, {a}) is an rRDF for G of weight n − 1, a contradiction. Now assume
that NG(x)∩NG(y) = ∅. Let x1 ∈ NG(x) \NG(y) and y1 ∈ NG(y) \NG(x). Then
({x, y}, V (G) \ {x, x1, y, y1}, {x1, y1}) is a desired γrR(G)-function.

For any odd integer n ≥ 3, let Gn be the graph obtained from (n−1)/2 copies
of K2 by adding a new vertex and joining it to both leaves of each K2. Thus
G3 = K3, and for n > 3, Gn has a vertex of degree n − 1 and all other vertices
of degree two. Figure 2 shows the graph G7. Let G = {Gn : n ≥ 3 is odd}.

Figure 2: The graph G7

Theorem 8 For every connected graph G of order n ≥ 3 with m edges we have
γrR(G) ≥ n+ 1− 2m/3, with equality if and only if G ∈ G.

Proof. If G is a star, then γrR(G) = n > (n+5)/3 = n+1−2m/3. Thus assume
that G is not a star. By Proposition 7, there is a γrR(G)-function f = (V0, V1, V2)
such that V0 ̸= ∅. Clearly, G[V0] has no isolated vertex. Thus |E(G[V0])| ≥ |V0|/2.
Let E(V0, V2) be the set of edges between vertices of V0 and vertices of V2. Since
every vertex of V0 has a neighbor in V2, we have |E(V0, V2)| ≥ |V0|. We have

m ≥ |E(G[V0])|+ |E(V0, V2)| ≥
1

2
|V0|+ |V0| =

3

2
|V0|, (1)

and thus |V0| ≤ 2m/3. We now get

n = |V0|+ |V1|+ |V2| ≤
2

3
m+ γrR(G)− |V2| ≤

2

3
m+ γrR(G)− 1. (2)
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This implies that γrR(G) ≥ n+ 1− 2m/3.
It is easy to see that for any odd integer n ≥ 3 we have γrR(Gn) = 2 and

|E(Gn)| = 3(n− 1)/2. Consequently, γrR(G) = n+ 1− 2m/3. Now assume that
G is a graph with γrR(G) = n + 1 − 2m/3. Then all inequalities of (1) and (2)
become equalities. We have |V2| = 1. Let V2 = {x}. Since |E(G[V0])| = |V0|/2,
the set V0 has an even number of vertices, and each component of G[V0] is a K2.
From |E(V0, V2)| = |V0| we obtain that every vertex of V0 is adjacent to x. Since
G is connected, we have |V1| = ∅. Consequently, G ∈ G.

It is proved in [17] that for a path Pn and a cycle Cn we have γrR(Pn) ≤ (2n
+6)/3 and 2n/3 ≤ γrR(Cn) ≤ (2n+5)/3. We have the following upper bound on
the restrained Roman domination number of a graph in terms of its diameter.

Proposition 9 For every connected graph G of order n we have γrR(G) ≤ n
+1− ⌊(diam(G)− 2)/3⌋, and this bound is sharp.

Proof. Let P = v0v1 . . . vdiam(G) be a diametrical path in G, and let f = (V0, V1,
V2) be a γrR(P )-function. Then w(f) ≤ (2(diam(G) + 1) + 6)/3. Define g on
V (G) by letting g(x) = f(x) for x ∈ V (P ), while g(x) = 1 if x ∈ V (G) \ V (P ).
Obviously, g is an rRDF for G. Hence γrR(G) ≤ w(f) + n − diam(G) − 1
≤ (2(diam(G) + 1) + 6)/3 + n − diam(G) − 1 = n + 1 − (diam(G) − 2)/3
≤ n+ 1− ⌊(diam(G)− 2)/3⌋. To see the sharpness, consider the path P6.

Similarly we obtain the following bound in terms of the girth and the order.

Proposition 10 For every connected graph G of order n and girth g(G) we have
γrR(G) ≤ n+ 1− ⌊(g(G)− 2)/3⌋, and this bound is sharp.

We have the following upper bound on the restrained Roman domination
number of a graph in terms of its order and size.

Proposition 11 If G is a connected graph of order n with m edges, then γrR(G)
≤ 2m− n+ 2, with equality if and only if G is a tree with γrR(G) = n.

Proof. Since G is connected, we have m ≥ n − 1. We now get γrR(G) ≤ n
= 2(n − 1) − n + 2 ≤ 2m − n + 2. If γrR(G) = 2m − n + 2, then m = n − 1
and thus G is a tree with γrR(G) = n. The converse is obvious.

3.3 Probabilistic bounds

For the probabilistic methods we follow [1]. Analogously to some results of [22],
we obtain several probabilistic bounds for the restrained Roman domination num-
ber. Cockayne et al. [3] presented the following bound for the Roman domination
number of a graph.
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Theorem 12 (Cockayne et al. [3]) Let G be a graph of order n. If δ > 0,
then

γR(G) ≤ n

(
2 ln(1 + δ)− ln 4 + 2

δ + 1

)
.

We show that the above bound holds for the restrained Roman domination if
n < δ(δ − 1)/(ln δ − ln 2 + 1).

Theorem 13 Let G be a graph of order n. If δ > 0 and n < δ(δ − 1)/(ln δ
− ln 2 + 1), then

γrR(G) ≤ n

(
2 ln(1 + δ)− ln 4 + 2

δ + 1

)
.

Proof. The condition n < δ(δ−1)/(ln δ− ln 2+1) implies that δ > n · (ln δ− ln 2
+1)/δ+1. By Theorem 12 we have γR(G) ≤ n ·(2 ln(1+δ)− ln 4+2)/(δ+1). Let
f = (V0, V1, V2) be a γR(G)-function with w(f) ≤ n · (2 ln(1+δ)− ln 4+2)/(δ+1)
such that |V1| is minimum. Then any vertex of V0 is adjacent to at most one
vertex of V1. Obviously, |V2| ≤ γR(G)/2. Let v ∈ V0. Then dG(v) ≥ δ > n
·(ln δ− ln 2+ 1)/δ+1 > n · (ln(δ+1)− ln 2+ 1)/δ+1 ≥ γR(G)/2+ 1 ≥ |V2|+1.
By the choice of f , the vertex v is adjacent to some vertex in V0. Thus f is
an rRDF and we get γrR(G) ≤ w(f) ≤ n(2 ln(1 + δ)− ln 4 + 2)/(δ + 1).

We have the following upper bound on the restrained Roman domination
number of a graph with no leaves and cut vertices.

Theorem 14 If G is a chordal graph of order n with no cut vertex and δ(G) ≥ 2,
then

γrR(G) ≤ 2n

(
1− δ

(δ + 1)1+
1
δ

)
.

Proof. Given a chordal graph G with no cut vertex and with minimum degree
at least two, we select a set of vertices A, where each vertex is selected inde-
pendently with probability p = 1 − (1/(δ + 1))1/δ. Let B = V \ N [A] be the
set of vertices not dominated by A. Let C ⊆ V (G) \ (A ∪ B) be the set of all
vertices c such that NG(c) ⊆ A ∪ B. It follows from the assumption that for
every c ∈ C we have NG(c) ⊆ A. Then f = (V (G) \ (A ∪ B ∪ C), B ∪ C,A)
is an rRDF. Clearly, Pr(x ∈ A) = p, Pr(x ∈ B) = (1 − p)1+dG(x) ≤ (1 − p)1+δ

and Pr(x ∈ C) = (1 − p) · pdG(x) ≤ (1 − p) · pδ. Since δ ≥ 2, we have p < 1/2.
We now bound the expected weight of f ,

E(w(f)) ≤ np+ n(1− p)1+δ + n(1− p)pδ (3)
≤ 2n(p+ (1− p)1+δ) (4)

≤ 2n

(
1− δ

(δ + 1)1+
1
δ

)
. (5)
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Now the result follows from the Pigeonhole property of expectation.

Corollary 15 Let G be a chordal graph of order n with no cut vertex. If δ(G) ≥ 2
and ln(1 + δ)/(1 + δ) ≤ 1/2, then

γrR(G) ≤ 2n

(
ln(1 + δ) + 1

δ + 1

)
.

Proof. We select a set of vertices A independently and randomly with probability
p = ln(1 + δ)/(1 + δ) and follow the proof of Theorem 14. Using the inequality
e−x ≥ 1− x for each x ≥ 0 we obtain from (3) that

E(w(f)) ≤ 2n(p+ (1− p)1+δ)

≤ 2n(p+ e−p(1+δ))

≤ 2n

(
ln(1 + δ) + 1

δ + 1

)
.

Let β(G) denote the maximum size of a matching in G.

Theorem 16 For every graph G of order n we have

γrR(G) ≤ 3 ln(δ + 1) + δ + 4− ln 8

δ + 1
· n− 2β(G).

Proof. Let f = (V0, V1, V2) be a γR(G)-function such that |V2| is minimum. Then
each vertex of V2 has a private neighbor in V0. Let M be a maximum matching
of G. Without loss of generality we may assume that M = {e1, . . . , ek, ek+1, . . . ,
eβ(G)}, where ei has at least one end-point in V2, for i = 1, 2, . . . , k. Thus k ≤ |V2|
and G has at least β(G)−k ≥ β(G)−|V2| edges with both end-points in V (G)\V2.
Let ei1, ei2, . . . , eit be the edges ofM which have exactly one end-point in V2. Then

g = (V0\{x : x ∈ ej, j = k+1, . . . , β(G)}, V1∪{x : x ∈ ej, j = k+1, . . . , β(G)}, V2)

is an rRDF for G. We now get

γrR(G) ≤ |V1|+ 2|V2|+ t

≤ |V1|+ 2|V2|+ |V0| − 2(β(G)− k)

= |V1|+ 2|V2|+ |V0| − 2β(G) + 2k

≤ |V1|+ 2|V2|+ |V0| − 2β(G) + 2|V2|
= |V1|+ 4|V2|+ (n− |V1| − |V2|)− 2β(G)

= n+ 3|V2| − 2β(G).
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By Theorem 12 we have |V2| ≤ γR(G)/2 ≤ n · (2 ln(1 + δ) − ln 4 + 2)/2(δ + 1).
Thus

γrR(G) ≤ n+
3n

2

(
2 ln(1 + δ)− ln 4 + 2

δ + 1

)
− 2β(G)

=
3 ln(δ + 1) + δ + 4− ln 8

δ + 1
· n− 2β(G).

Corollary 17 If a graph G of order n has a perfect matching, then

γrR(G) ≤ 3 ln(δ + 1) + 3− ln 8

δ + 1
· n.

4 Restrained Roman domination in random graphs

Let n be a positive integer and let p ∈ {0, 1}. The random graph G(n, p) is a prob-
ability space over the set of graphs on the vertex set [n] = {1, . . . , n} determined
by Pr[{i, j} ∈ E(G)] = p with these events mutually independent (see for exam-
ple [2]). We say that a random graph G = G(n, p) satisfies a property Q if the
probability that G has the property Q tends to 1 as n tends to infinity. We also
say that almost all graphs satisfy the property Q if a random graph satisfies Q.

Theorem 18 (Weber [20]) For almost every graph G(n, p) we have k+1 ≤ γ(G)
≤ k + 2, where k = ⌊log n − 2 log log n + log log e⌋ and the logarithm is in base
1/(p− 1).

It follows from the above theorem that γ(G) = log n(1+ o(1)). We show that
the restrained Roman domination number is equal to the Roman domination
number in a random graph.

Theorem 19 For almost every graph G we have γrR(G) = γR(G).

Proof. From Theorem 12 of [2] we know that for a random graph G = G(n, p)
we have∣∣∣∣∣δ − pn− (2pqn log n)

1
2 +

(
pqn

8 log n

) 1
2

log log log n

∣∣∣∣∣ ≤ c(n)

(
n

log n

) 1
2

,

where c(n) tends to infinity arbitrarily slowly, and the logarithm is in base
1/(p − 1). Thus we obtain δ = pn(1 + o(1)). Let D be a γ(G)-set. Thus
|D| = log n(1 + o(1)). It is obvious that f = (V (G) \D, ∅, D) is an RDF for G.
We have γR(G) = w(f) ≤ 2|D| = 2 log n(1 + o(1)). Let g = (V0, V1, V2) be

13



a γR(G)-function such that V1 is minimum. Then each vertex of V0 is adjacent
to at most one vertex of V1. Let v ∈ V0. Then dG(v) ≥ δ = pn(1 + o(1)). If n is
sufficiently large, then pn(1 + o(1)) > 2 log n(1 + o(1)) + 1 ≥ |V2|+ 1. Thus v is
adjacent to some vertex in V0. Consequently, g is an rRDF. Thus γrR(G) ≤ γR(G)
and the result follows.
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