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Abstract

One of the most important problems in graph theory is to find the
minimum values of domination parameters. The problems are usually NP-
hard. We study total domination and total dominating polynomials from
viewpoint of linear programming.
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1 Introduction

In graph theory, to find the edge cover, vertex cover or dominating set of minimum
cardinality, as well as independent set and matching of maximum cardinality, and
their polynomials, are important and applied concepts. There exist algorithms
for finding some of them, but the problems are NP-hard. We study the concept
of total dominating sets and total dominating polynomials from viewpoint of lin-
ear and binary programming. We compute the coefficients of the polynomials by
solving a system of linear equations with {0, 1} variables.
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Let G = (V,E) be a graph with |V (G)| = n and |E(G)| = m. Then the vertex
cover and vertex dominating polynomials are of degree n, the edge cover and edge
dominating polynomials are of degree m, and the coefficient of xk is the number
of such sets of cardinality k. Also the matching and independence polynomials
are of degree at most n such that the coefficient of xk is the number of matchings
and independent sets of cardinality k, respectively. Graph polynomials, including
dominating, edge and vertex covering, independence, and matching have been
studied for example in [1, 2, 4–6].
In a graph G, a subset D ⊆ V (G) is a dominating set if every vertex

of V (G)\ D has a neighbor inD. The domination number of G, denoted by γ(G),
is the minimum cardinality of a dominating set ofG. A subsetD ⊆ V (G) is a total
dominating set of G if every vertex of G has a neighbor inD. The minimum cardi-
nality of a total dominating set of G is the total domination number of G, and is
denoted by γt(G). Let V (G) = {v1, v2, . . . , vn} and E(G) = {e1, e2, . . . , em}.
The total dominating polynomials are of degree n, and the coefficient of xk is the
number of total dominating sets of cardinality k.
We denote the adjacency matrix by A, where A = [aij ]n×n and aij is the

number of edges with endpoints vi and vj. A complete graph Kn is a graph whose
vertices are pairwise adjacent. A graph G is bipartite if V (G) is a union of two
disjoint (possibly empty) independent sets called partite sets of G. A complete
bipartite graph is a bipartite graph in which two vertices are adjacent if and only
if they are in different partite sets. When the sets have sizes p and q, the graph
is denoted by Kp,q. The complement G of a graph G is a graph with vertex set
V (G) such that uv ∈ E(G) if and only if uv /∈ E(G). The join G1 ∨ G2 of two
vertex-disjoint graphs G1 and G2, is a graph with V (G1 ∨G2) = V (G1) ∪ V (G2)
and E(G1 ∨G2) = E(G1) ∪ E(G2) ∪ {xy : x ∈ V (G1), y ∈ V (G2)}.

2 Algorithm for total domination

Using linear programming on adjacency matrix, we have the following results
for determining the minimum size of a total dominating set. For more details
on linear programming, see [3].
Let V (G) = (v1, v2, . . . , vn)

t and 1n = (1, 1, . . . , 1)t.

Theorem 1 Let A be the adjacency matrix of a connected graph G = (V,E) with
|V (G)| = n. Then the minimum size of a total dominating set can be obtained
as follows,

γt = min
n

∑

j=1

vj

subject to: (A+ In)V ≥ 1n

vj ∈ {0, 1} where j = 1, 2, . . . , n
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vj = 1 ⇒ ∃vi ∈ NG(vj) such that vi = 1.

Proof. Let D be a total dominating set of G. Since we want to obtain a smallest
total dominating set, we have a minimization problem, where the object function
is γt = min

∑n

j=1 vj. On the other hand, for each vj ∈ V (G), at least one of the
vertices vk ∈ D must be adjacent to vj. Thus from every row of A+ In, at least
one entry (vk) must be equal to 1. Also, D has no isolated vertex. Therefore

a11v1 + a12v2 + . . .+ a1nvn ≥ 1

a21v1 + a22v2 + . . .+ a2nvn ≥ 1

...

an1v1 + an2v2 + . . .+ annvn ≥ 1

vj ∈ {0, 1} where j = 1, 2, . . . , n

vj = 1 ⇒ ∃vi ∈ NG(vj) such that vi = 1.

Definition 2 A total dominating polynomial TD(G, x) or TD(x) is as follows:

TD(x) = fγtx
γt + fγt+1

xγt+1 + . . .+ fnx
n,

where γt is the total domination number and fis are the numbers of total domi-
nating sets of cardinality i.

Theorem 3 Let A be the adjacency matrix of a connected graph G = (V,E) with
|V (G)| = n. Then the number of total dominating sets of cardinality k, where
γt ≤ k ≤ n, can be obtained as follows,

n
∑

j=1

vj = k (1)

subject to: (A+ In)V ≥ 1n (2)

vj ∈ {0, 1} where j = 1, 2, . . . , n

vj = 1 ⇒ ∃vi ∈ NG(vj) such that vi = 1. (3)

Proof. The inequality (2) and the phrase (3) are the conditions for a set to be
total dominating, and the equality (1) for each k is satisfied when we have a total
dominating set of cardinality γt, γt+1, . . . , n, respectively, and with this process
we can compute fγt , fγt+1

, . . . , fn. It is trivial that fn = 1.
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Theorem 4 Let G = (V,E) be a connected graph in which |V (G)| = n. Then:

(a) If G has no leaf, then fn−1 = n.

(b) fn = 1.

(c) fi = 0 if and only if i > n or i < γt(G).

(d) TD(x) has no constant term.

(e) TD(x) is strictly increasing on [0,∞].

(f) If H is a subgraph of G, then deg TD(H, x) ≤ deg TD(G, x).

(g) Zero is a root of TD(x) with respect to γt(G).

Proof. We only prove (a) and (g). The remaining statements are straightfor-
ward.

(a) By discarding any vertex we obtain a total dominating set. Thus there
are n total dominating sets of cardinality n− 1.

(g) TD(x) = fγtx
γt+fγt+1

xγt+1 . . .+fnx
n = xγt ·(fγt+fγt+1

x+. . .+fnx
n−γt) = 0

⇒

{

xγt = 0 or
fγt + . . .+ fnx

n−γt = 0

Example 5 Consider the Petersen graph:

v5

v1

v2

v9

v6

v4 v3

v10 v7

v8

Figure 1

Since γt = 4,

TD(x) = fγtx
γt + fγt+1

xγt+1 + . . .+ fnx
n = f4x

4 + f5x
5 + . . .+ f10x

10
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is the total dominating polynomial for the Petersen graph. We want to compute
these coefficients. Let Ap be the adjacency matrix. Next we solve the problem
by using the following algorithm:

10
∑

j=1

vj = k, where 4 ≤ k ≤ 10

(Ap + I10)V ≥ 110 ⇒

v1 + v2 + v5 + v6 ≥ 1 v1 + v2 + v3 + v7 ≥ 1

v2 + v3 + v4 + v8 ≥ 1 v3 + v4 + v5 + v9 ≥ 1

v1 + v4 + v5 + v10 ≥ 1 v1 + v6 + v8 + v9 ≥ 1

v2 + v8 + v9 + v10 ≥ 1 v3 + v6 + v8 + v10 ≥ 1

v4 + v6 + v7 + v9 ≥ 1 v5 + v7 + v8 + v10 ≥ 1

vj ∈ {0, 1} where j = 1, 2, . . . , 10

vj = 1 ⇒ ∃vi ∈ NG(vj) such that vi = 1.

First we compute f4. As we show in Figure 1, we may select three vertices from
outside the cycle and one vertex from inside the cycle, or vice versa. Therefore
f4 = 10.
If we want to choose five vertices either from outside or from inside the cycle,

then obviously there are 2 ways of doing this.
Now assume that we choose four vertices from outside the cycle and one vertex

from inside the cycle, or vice versa. There are 2 · 5 · 2 = 20 ways of doing this.
Now assume that we choose three vertices from outside the cycle and two

vertices from inside the cycle, or vice versa. There are 2 · 5 · 6 = 60 ways of doing
this.
We now conclude that f5 = 82.
Similarly, one can obtain f6 = 200, f7 = 118, f8 = 70, f9 = 10 and f10 = 1,

and the total dominating polynomial of the Petersen graph is:

TD(x) = 10x4 + 82x5 + 200x6 + 118x7 + 70x8 + 10x9 + x10.

Theorem 6 Let G1, G2, . . . , Gm be connected components of G such that none
of them is an isolated vertex. Then

TD(G, x) = TD(G1, x) · TD(G2, x) · . . . · TD(Gm, x).

Proof. It suffices to prove the result for m = 2. For k ≥ γt(G), a total dom-
inating set of cardinality k can be obtained by selecting a total dominating set
of cardinality j for G1 (where γt(G1) ≤ j ≤ |V (G1)|) and a total dominating set
of cardinality k − j for G2 (where γt(G2) ≤ k − j ≤ |V (G2)|). The coefficient
of xk in TD(G1, x) · TD(G2, x) is obtained by products of the coefficients of x

j

and xk−j.
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3 Coefficients of the total dominating polyno-

mial

We now determine the coefficients of the total dominating polynomial for some
families of graphs.

3.1 Coefficients of the polynomial for Kn

Theorem 7 If G = Kn, then fi =
(

n

i

)

, where n ≥ 2 and i ≥ 2.

Proof. We have γt = 2 for complete graphs on at least two vertices. Since all
vertices of a complete graph are pairwise adjacent, there are

(

n

i

)

total dominating
sets of cardinality i.

We now compute the total dominating polynomial for Kn.

Theorem 8 For every positive integer n we have TD(Kn, x) = (1+x)n−1−nx.

Proof. We have γt(Kn) = 2 and td(Kn, i) = fi =
(

n

i

)

for 2 ≤ i ≤ n. We now get
TD(Kn, x) =

∑n

i=2

(

n

i

)

xi = (1 + x)n −
(

n

0

)

· x0 −
(

n

1

)

· x1 = (1 + x)n − 1− nx.

3.2 Coefficients of the polynomial for Pn

It is well known [7] that the total domination number of a path Pn is:

γt(Pn) =

{

n/2 if n = 4k;
⌊n/2⌋+ 1 otherwise.

We now give a formula for the number of minimum total dominating sets
of paths.

Theorem 9 For paths Pk we have

fγt =















1 if n = 4k;
k + 1 if n = 4k − 1;
k2 if n = 4k − 2;
k − 1 if n = 4k − 3.

Proof. Let D be a γt(Pn)-set. If n = 4k, then γt(Pn) = 2k. Since {v2, v3, v6,
v7, . . . , vn−2, vn−1} is the only minimum total dominating set of Pn, we have
fγt(Pn) = 1 for n = 4k.
Now assume that n = 4k − 1. Then γt(Pn) = ⌊n/2⌋ + 1 = 2k. We have the

following facts.
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Fact 1. Assume that v1, vn /∈ D. Then v2, v3, vn−2 and vn−1 should be in D.
For 4k−7 other vertices of Pn, 2k−4 of them should be in D. Since at most two
consecutive vertices can be outside the set D, there is a vertex vi (4 ≤ i ≤ n− 3)
such that vi /∈ D, while vi−1, vi−2, vi+1, vi+2 ∈ D. Choosing vi leads to k− 1 total
dominating sets.
Fact 2. Assume that v1 /∈ D and v2, v3, vn−1, vn ∈ D. Then from the 4k − 6

remaining vertices, 2k− 4 should be in D. Then the other vertices of D form the
set {v4i+2, v4i+3 : 1 ≤ i ≤ k − 2}. Thus there is only one such total dominating
set for Pn.
Fact 3. Assume that vn /∈ D and v1, v2, vn−2, vn−1 ∈ D. Similarly as in Fact 2,

there is only one such total dominating set for Pn.
Fact 4. The case v1, v2, vn−1, vn ∈ D is not possible, since any choice gives us

three consecutive vertices not being in D. We now conclude that fγt(Pn) = k+1
if n = 4k − 1.
Now assume that n = 4k − 3. Then γt(Pn) = ⌊n/2⌋ + 1 = 2k − 1. No total

dominating set includes both vertices v1 and v2, or both vertices vn−1 and vn,
as then there are three consecutive vertices which are not in D. Assume that
v1, vn /∈ D. Then the vertices v2, v3, vn−2, vn−1 should be in D. Also for the
4k − 9 other vertices, 2k − 5 vertices should be in D. In this case we have to
choose these 2k − 5 vertices in such a way that only one vertex from each set
{v4i−2, v4i−1, v4i} (1 ≤ i ≤ k−1) belongs to D. Thus fγt(Pn) = k−1 if n = 4k−3.
Now assume that n = 4k − 2. Then γt(Pn) = ⌊n/2⌋ + 1 = 2k. We have the

following facts.
Fact 1. The vertices are divided into two sets of 5 consecutive vertices and

k − 3 sets of 4 consecutive vertices. The placement of 5-vertex sets implies that
there are

(

k−1
2

)

= (k − 1)!/(2!(k − 3)!) = (k − 1)(k − 2)/2 such total dominating
sets.
Fact 2. The vertices are divided into one set of 6 consecutive vertices and

k − 2 sets of 4 consecutive vertices. The placement of the 6-vertex set implies
that there are k − 1 such total dominating sets.
Fact 3. Assume that v1, vn, v4, vn−3 /∈ D and v2, v3, vn−1, vn−2 ∈ D. Then

from the 4k − 10 remaining vertices, 2k − 4 should be in D.
If v5, v6, vn−4, vn−5 ∈ D, then there is only on way for choosing the total

dominating set.
If v5 /∈ D and vn−4 ∈ D, then vn−5 ∈ D and there exists a vertex v4i such that

v4i /∈ D and v4i−1, v4i−2, v4i+1, v4i+2 ∈ D for 2 ≤ i ≤ k − 2. Thus the placement
of the vertex v4i implies that there are k − 3 such total dominating sets.
If v5 ∈ D and vn−4 /∈ D, then v6 ∈ D and similarly as in the previous

possibility, there exist k − 3 such total dominating sets.
If v5, vn−4 /∈ D, then for the 4k−12 remaining vertices, 2k−4 should be in D

and 2k−8 should be outside D. Then there exist two vertices vi and vj in Pn \D,
where 8 ≤ j ≤ i ≤ n − 7 and i − j ≥ 3. Placement of the vertices implies that
there are

(

k−3
2

)

= (k − 3)!/(2!(k − 5)!) = (k − 3)(k − 4)/2 such total dominating
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sets.
Therefore Fact 3 gives us 1+2(k−3)+(k−3)(k−4)/2 total dominating sets.
Fact 4. Now assume that v1, v2 ∈ D and v3, vn, vn−3 /∈ D. Then vn−1, vn−2

∈ D. Thus from the 4k− 9 remaining vertices, 2k− 4 should be in D and 2k− 5
should be outside D.
If v4 /∈ D, then there exists only one total dominating set in which v4i+1, v4i+2

∈ D (for 1 ≤ i ≤ k − 2) and v4i−1, v4i /∈ D (for 2 ≤ i ≤ k − 2).
If v4 /∈ D, then similarly as in the previous possibility, there is only one such

total dominating set.
If v4, vn−4 /∈ D, then total dominating sets should be chosen in such a way

that exactly one vertex from the set {v4i+3 : 1 ≤ i ≤ k−3} does not belong to D.
Thus there are k − 3 total dominating sets.
We now conclude that in this fact we obtain k − 1 total dominating sets.
Fact 5. Now assume that v1, v4, vn−2 /∈ D. Then v2, v3, vn, vn−1 ∈ D. Simi-

larly as in the previous fact, there are k − 1 such total dominating sets.
Fact 6. Now assume that v1, v2, vn, vn−1 ∈ D. From the 4k − 6 remaining

vertices, 2k−4 should be in D and 2k−2 should be outside D. Thus there is only
one total dominating set, as the vertices of {v4i+1, v4i+2 : 1 ≤ i ≤ k − 2} should
be in D and the vertices of {v4i−1, v4i : 1 ≤ i ≤ k − 1} should be outside D.
We now conclude that the number of minimum total dominating sets for P4k−2

is

(k − 1)(k − 2)

2
+ (k − 1) + 1 + 2(k − 3) +

(k − 3)(k − 4)

2
+ 2(k − 1) + 1 = k2.

Let us observe that for any path Pn, if a vertex vi is outside a total dominating
set, then i 6= 2 or i 6= n− 1.

Observation 10 We have td(Pn, n− 1) = n− 2 for n ≥ 4.

We now find the number of total dominating sets of a path Pn of cardinality
n− 2.

Theorem 11 For each positive integer n ≥ 6 we have

td(Pn, n− 2) = 1 +
(n− 4)(n− 3)

2
.

Proof. Let v1, v2, . . . , vn be the vertices of Pn, and let D be a total dominating
set of cardinality n−2. If v1, vn /∈ D, then there is only one such total dominating
set. Now assume that v1 /∈ D and vn ∈ D. Then v2, v3, vn−1 ∈ D. The other
vertex outside the set D is one of the vertices of the set {vi : 4 ≤ i ≤ n−2}. There
are n−5 such total dominating sets. Now assume that vn /∈ D and v1 ∈ D. Then
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v2, vn−1, vn−2 ∈ D. Similarly as in the previous possibility, there are n − 5 such
total dominating sets. Now assume that v1, v2, . . . , vk, vn, vn−1, . . . , vn−(k−1) ∈ D
for 2 ≤ k ≤ ⌊(n − 4)/2⌋. If vk+1 /∈ D, then the other vertex outside D is one of
the vertices of the set {vi : k + 4 ≤ i ≤ n − k}. There exist n − (2k + 3) such
total dominating sets. If vn−k /∈ D, then the other vertex outside D is one of the
vertices of the set {vi : k+5 ≤ i ≤ n−k}. There exist n−(2k+4) total dominating
sets with n−2 vertices. Thus there are 1+2+. . .+(n−8)+(n−7) = (n−7)(n−6)/2
such total dominating sets. We now conclude that the number of total dominating
sets of Pn of cardinality n− 2 equals 1 + 3(n− 5) + (n− 7)(n− 6)/2 = 1 + (n−
6) + (n− 5) + (n− 4) + (n− 7)(n− 6)/2 = 1 + (n− 4)(n− 3)/2.

Since (n−4)(n−3)/2 = (n−5)(n−4)/2+n−4, we get the following corollary
from Observations 10 and 11.

Corollary 12 For each positive integer n ≥ 7 we have

td(Pn, n− 2) = td(Pn−1, n− 3) + td(Pn−2, n− 3).

Theorem 13 For every positive integer n ≥ 6 we have td(Pn, n − 2) =
(

n

n−2

)

−2− 3(n− 3).

Proof. The result we prove by the induction on the number n. For P6, Theo-
rem 11 implies that td(P6, 4) = 1+ (6− 4)(6− 3)/2 = 4 =

(

6
6−2

)

− 2− 3 · (6− 3).
Assume that the result is true for Pk, where 6 ≤ k ≤ n−1. Let k = n and consider
a path Pn. By Theorem 11 we have td(Pn, n−2) = td(Pn−1, n−3)+td(Pn−2, n−3).
Applying the inductive hypothesis and Observation 10 we get td(Pn−1, n − 3)
=

(

n−1
n−3

)

−2−3(n−4)+(n−4) = (n−1)(n−2)/2−2−2(n−4) = (n2−7n+14)/2

= n(n− 1)/2− 3(n− 3)− 2 =
(

n

n−2

)

− 2− 3(n− 3) = td(Pn, n− 2).

3.3 Coefficients of the polynomial for Cn

It is well known [7] that the total domination number of a path Cn is:

γt(Cn) =

{

n/2 if n = 4k;
⌊n/2⌋+ 1 otherwise.

We now give a formula for the number of minimum total dominating sets
of cycles.

Theorem 14 For paths Pn we have

fγt =















n if n = 4k − 1;
4 if n = 4k;
n if n = 4k + 1;
n2/4 if n = 4k + 2.
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Proof. Let D be a γt(Cn)-set. First assume that n = 4k − 1. Then γt = (Cn)
= 2k. There is a vertex vi outside D such that vi+1, vi+2, vi−1, vi−2 (mod n) should
be in D. Changing i between 1 to n gives us n total dominating sets for Cn. Thus
fγt(C4k−1) = 4k − 1.
Now assume that n = 4k. Then γt = (Cn) = 2k. If v1, v2 ∈ D, then

D = {v4i+1, v4i+2 : 0 ≤ i ≤ k − 1}. If v2, v3 ∈ D, then D = {v4i+2, v4i+3 : 0 ≤ i
≤ k − 1}. If v3, v4 ∈ D, then D = {v4i+3, v4i+4 : 0 ≤ i ≤ k − 1}. If v4, v5 ∈ D,
then D = {v4i+4, v4i+5 : 0 ≤ i ≤ k − 1}.
The remaining cases are similar. Therefore fγt(C4k) = 4.
Now assume that n = 4k+1. Then γt(Cn) = 2k+1. The set D contains three

consecutive vertices v1, v2, v3 and the other vertices of D are vertices of the set
{v4i+2, v4i+3 : 1 ≤ i ≤ k − 1}. There are n different triples of consecutive vertices
in Cn. Thus there are n total dominating sets. Consequently, fγt(C4k+1) = 4k+1.
Now assume that n = 4k+2. Then γt = (Cn) = 2k+2. The total dominating

sets of Cn are determined as follows.
Fact 1. There are four consecutive vertices vi, vi+1, vi+2, vi+3 in D. Thus the

other vertices of D are vi+6, vi+7, vi+10, vi+11, . . . , vi−4, vi−3. Since i can take all
indices, thus there are 4k + 2 such total dominating sets.
Fact 2. If vi, vi+1, vi+2, vj, vj+1, vj+2 (where j − i ≥ 5 and |j + 2 − i| ≥ 3)

are in D, then the other vertices of D are two consecutive vertices. Without
loss of generality we assume that i = 1. If k is even, then for every j such that
j ∈ {4t + 2: 1 ≤ t ≤ k/2 − 1} there are 4k + 2 total dominating sets. For
j = 2k there are 2k+1 total dominating sets. The other js give us repeated total
dominating sets. Thus there are k(4k + 2)/2 − (2k − 1) total dominating sets.
If k is odd, then for every j such that j ∈ {4t + 2: 1 ≤ t ≤ (k − 1)/2} there are
4k+2 total dominating sets. The other js give us repeated total dominating set.
Thus there are (k − 1)(4k + 2)/2 such total dominating sets.
Fact 3. Let vi and vj (where |j − i| ≥ 3 mod n) be two vertices outside D

such that vi−1, vi−2, vi+1, vi+2 and vj−1, vj−2, vj+1, vj+2 are in D. Without loss
of generality assume that i = 1. If k is even, then there are k/2 total dominating
sets. Thus there are k(4k + 2)/2 total dominating sets. If k is odd, then there
are (k − 1)(4k + 2)/2 total dominating sets, and for j = 4 · (k + 1)/2 there are
2k+1 total dominating sets. The other js give us repeated total dominating sets.
We now conclude that fγt(C4k+2) = (2k + 1)2.

Since discarding each vertex of Cn gives a total dominating set for Cn, we have
the following observation.

Observation 15 td(Cn, n− 1) = n.

We now find the number of total dominating sets of a path Cn of cardinal-
ity n− 2.
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Theorem 16 For every positive integer n ≥ 5 we have

td(Cn, n− 2) =
(n− 2)(n− 1)

2
− 1.

Proof. Let D be a total dominating of Cn of cardinality n − 2. If the two
vertices outside D are vi and vi+1, then there are n such total dominating sets.
Now assume that the two vertices outside D are vi and vj, where d(vi, vj) ≥ 3.
If i = 1, then j ∈ {4, 5, . . . , n − 2}. There are n − 5 such total dominating sets.
Now assume that i = 2. Then j ∈ {5, 6, . . . , n − 1}. There are n − 5 such total
dominating sets. Now assume that i = 3. Then j ∈ {6, 7, . . . , n}. There are
n − 5 total dominating sets. Generally, if i = k where 4 ≤ k ≤ n − 3, then
j ∈ {k + 3, k + 4, . . . , n}. There are n − k − 2 = (n − 5) − (k − 3) such total
dominating sets. We now get td(Cn, n− 2) = n+1+ 2+ . . .+ (n− 6) + 3(n− 5)
= n+ (n− 3)(n− 2)/2− 3 = (n− 2)(n− 1)/2− 1.

Since (n − 1)(n − 3)/2 = (n − 3)(n − 2)/2 + (n − 1), we have the following
corollary from Observations 15 and 16.

Corollary 17 For every integer n ≥ 6 we have

td(Cn, n− 2) = td(Cn−1, n− 3) + td(Cn−2, n− 3).

We have the following corollary from Theorem 14.

Corollary 18 For every positive integer n we have td(C4n, 2n) = 4.

Theorem 19 For each integer n ≥ 5 we have td(Cn, n− 2) =
(

n

n−2

)

− n.

Proof. The result we prove by the induction on the number n. If n = 5, then
by Theorem 16 we have td(C5, 3) = (5 − 2)(5 − 1)/2 − 1 =

(

5
5−2

)

− 5. Assume
that it is true for Ck (5 ≤ k ≤ n − 1). Let k = n and consider a cycle Cn.
By Corollary 17 we have td(Cn, n− 2) = td(Cn−1, n− 3)+ td(Cn−2, n− 3). Using
the inductive hypothesis and Theorem 16 we get td(Cn−1, n−3) =

(

n−1
n−3

)

−(n−1).
By Observation 15 we have td(Cn−2, n − 3) = n − 2. Therefore td(Cn−1, n − 3)
+td(Cn−2, n− 3) =

(

n−1
n−3

)

− (n− 1) + (n− 2) =
(

n

n−2

)

− n = td(Cn, n− 2).

4 Total dominating polynomial for G1 ∨G2

We now obtain total dominating polynomial for a join of graphs.
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Theorem 20 Let G1 and G2 be two graphs of order n1 and n2, respectively. The
coefficients of the total dominating polynomial for G1 ∨ G2 can be computed as
follows:

fi = td(G1 ∨G2, i) =
i−1
∑

j=1

(

n1

j

)(

n2

i− j

)

+ td(G1, i) + td(G2, i)

γt(G1 ∨G2) = 2 ; 2 ≤ i ≤ n1 + n2

such that td(G1, i) and td(G2, i) are the numbers of i-element total dominating
sets of the graphs G1 and G2, respectively.

Proof. We find the number of total dominating sets of cardinality i as follows.
Clearly, at least one vertex of G1 or G2 must be selected. First we select a vertex
of G1 and if it is possible, i− 1 vertices of G2; this is probably equal to

(

n1

1

)(

n2

i−1

)

.
We can select two vertices of G1 and i−2 vertices of G2, this is probably equal to
(

n1

2

)(

n2

i−2

)

. Besides that, it is possible that we select all of i vertices of G1 or G2.
The number of positions for this way is td(G1, i) or td(G2, i), respectively. Then
generally we get td(G1∨G2, i) =

(

n1

1

)(

n2

i−1

)

+
(

n1

2

)(

n2

i−2

)

+ . . .+
(

n1

i−1

)(

n2

1

)

+ td(G1, i)

+td(G2, i). If i < j, then
(

i

j

)

= 0, also for each i > n1; td(G1, i) = 0 and for each

i > n2; td(G2, i) = 0. It is remarkable that td(G1 ∨ G2, n1 + n2) =
(

n1

n1

)(

n2

n2

)

= 1.

Theorem 21 Let G1 and G2 be two graphs with n1 and n2 vertices, respectively.
Then

TD(G1 ∨G2, x) = ((1 + x)n1 − 1)((1 + x)n2 − 1) + TD(G1, x) + TD(G2, x).

Proof.

TD(G1 ∨G2, x) =

n1+n2
∑

i=2

fix
i

=

n1+n2
∑

i=2

[

i−1
∑

j=1

(

n1

j

)(

n2

i− j

)

]

xi + TD(G1, x) + TD(G2, x)

=
[

n1
∑

j=1

(

n1

j

)

xj
][

n2
∑

k=1

(

n2

k

)

xk
]

+ TD(G1, x) + TD(G2, x)

= ((1 + x)n1 − 1)((1 + x)n2 − 1) + TD(G1, x) + TD(G2, x).
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Theorem 22 Let G be a complete bipartite graph Kn,m. Then

td(Kn,m, i) = fi =
i−1
∑

j=1

(

n

j

)(

m

i− j

)

and
TD(Kn,m, x) = ((1 + x)n − 1)((1 + x)m − 1) + xn + xm.

Proof. By the previous theorem, it suffices to consider G1 = Kn and G2 = Km.

Corollary 23 For stars we have

TD(Kn−1,1, x) = ((1 + x)n−1 − 1)x+ TD(Kn−1, x) + TD(K1, x)

= ((1 + x)n−1 − 1)x

and

fi =

(

n− 1

i− 1

)

.

Corollary 24 For each positive integer n ≥ 2, the total dominating polynomial
for Wn (wheel with n vertices) is computed as follows,

TD(Wn, x) = ((1 + x)n−1 − 1)x+ TD(Cn−1, x).

Proof. In fact, Wn is Cn−1 ∨K1. Therefore

TD(Cn−1 ∨K1, x) = ((1 + x)n−1 − 1)((1 + x)− 1) + TD(Cn−1, x) + TD(K1, x)

= ((1 + x)n−1 − 1)x+ TD(Cn−1, x).
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