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Abstract

Let G = (V,E) be a graph with vertex set V and edge set E.
A vertex v ∈ V (G) is said to dominate itself and all vertices in its
neighborhood NG(v) = {u : uv ∈ E(G)}. A set D ⊆ V (G) is a double
dominating set of G if every vertex v ∈ V (G) is dominated by at least
two vertices of D. The double domination number γd(G) equals the
minimum cardinality of a double dominating set of G. Let E′ ⊆ E be
a subset of the set of edges, and let G−E′ = (V,E−E′) be the graph
obtained from G by removing the edges of E′. The double bondage
number bd(G) equals the minimum cardinality of a set E′ ⊆ E such
that the graph G − E′ does not contain an isolated vertex (that is,
a vertex u with NG(u) = ∅) and γd(G − E′) > γd(G). If for every
subset E′ ⊆ E, either γd(G − E′) = γd(G) or G − E′ contains an
isolated vertex, then we define bd(G) = 0, and we say that G is a γd-
strongly stable graph. We present several basic properties of double
bondage in graphs and we determine the double bondage numbers
of several classes of graphs. We also characterize the class of trees T
for which bd(T ) = 1.
Keywords: double domination, bondage, double bondage, graph,
tree.
AMS Subject Classification: 05C05, 05C69.

1 Introduction

Let G = (V,E) be a graph of order n = |V |. The (open) neighborhood of
a vertex v ∈ V (G) is the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}; vertices
in NG(v) are called the neighbors of v. The degree of a vertex v is dG(v)
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= |NG(v)|. An isolated vertex is a vertex v for which dG(v) = 0. Let δ(G)
be equal to the minimum degree of a vertex v ∈ V (G). A set S ⊆ V (G) is
independent if no two vertices in S are adjacent.
Let E′ ⊆ E(G) be a subset of the set edges of G. Let G′ = (V,E −E′)

be the graph obtained from G by removing the edges of E′. Since V (G′)
= V (G), we say that G′ is a spanning subgraph of G.
A leaf is a vertex v with dG(v) = 1, and a support vertex is a vertex

having a neighbor that is a leaf. A support vertex is called strong if it has
two or more leaf neighbors, otherwise it is called a weak support vertex.
Let T be a tree and let uv be an edge of T . Removing the edge uv

from T produces a graph consisting of two subtrees, Tu and Tv. In this
case, we say that the vertex u is adjacent to the subtree Tv, and conversely,
the vertex v is adjacent to the subtree Tu. Let Pn denote the path of order n
(and length n− 1). A vertex u in a tree T is adjacent to a path Pn if there
is an edge uv such that the subtree Tv is isomorphic to Pn, in which v is
a leaf.
A star, denoted by K1,m, is a tree of order m + 1 having exactly one

vertex of degree greater than one. Note that by the definition, a star has at
least three vertices. The process of subdividing an edge, say uv, in a graph G
consists of removing the edge uv, adding a new vertex, say x, and adding
two new edges ux and xv. A subdivided star, denoted by S(K1,m), is a graph
obtained from a star K1,m by subdividing each one of its m edges.
Let Cn denote a cycle of order n and let Kn denote a complete graph of

order n. The join of two graphs G and H is the graph G+H obtained from
the disjoint union of G and H by adding an edge between each vertex of G
and each vertex of H. A wheel is a graph of the form Wn = K1 + Cn−1.
A complete bipartite graph Kp,q = Kp + Kq has two independent sets of
orders p and q, called its partite sets.
A vertex v ∈ V (G) is said to dominate itself and all of its neighbors.

A set D ⊆ V (G) is called a dominating set of G if every vertex v ∈ V (G) is
dominated by at least one vertex of D, and it is a double dominating set,
abbreviated DDS, of G if every vertex v ∈ V (G) is dominated by at least
two vertices of D. The domination number γ(G) and double domination
number γd(G) are equal to the minimum cardinalities of a dominating set
and double dominating set of G, respectively. A dominating (double dom-
inating) set of G of minimum cardinality is called a γ(G)-set (γd(G)-set).
Note that an isolated vertex cannot be dominated by two vertices. There-
fore, while considering double domination, we always assume that a graph
has no isolated vertices.
Double domination in graphs was introduced by Harary and Haynes

in [11] and is further studied for example in [1–5, 8–10, 17–21]. For a com-
prehensive survey of domination in graphs, see Haynes, Hedetniemi, and
Slater [14, 15].
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The bondage number b(G) of a graph G equals the minimum cardinality
of a set of edges E′ ⊆ E such that γ(G−E′) > γ(G). If for every E′ ⊆ E,
γ(G−E′) = γ(G), then we define b(G) = 0 and we say that G is γ-strongly
stable. Bondage in graphs was introduced by Fink, Jacobson, Kinch, and
Roberts in [7] and is further studied for example in [6, 12, 13, 16, 22, 24, 25].
Yogeesha and Soner introduced the double bondage number bd(G) in [26],

as the minimum cardinality of a set of edges E′ ⊆ E such that δ(G−E′) ≥ 1
and γd(G−E′) > γd(G). If for every E′ ⊆ E, either γd(G−E′) = γd(G) or
δ(G− E′) = 0, then we define bd(G) = 0 and we say that G is γd-strongly
stable.
In a distributed network, some vertices act as resource centers, or servers,

while other vertices are clients. If a set D of servers is a dominating set,
then every client in V (G) \ D has direct (one hop) access to at least one
server. Double dominating sets represent a higher level of service, since
every client has guaranteed access to at least two servers. In addition, ev-
ery server in D has access to at least one other server in D, as a backup.
The double bondage number of a graph, therefore, provides an estimate
of the cost of continuing to provide double server access in the event that
certain communication links fail.
In Section 2 we discuss some basic properties of double domination and

double bondage in graphs, we determine double domination numbers and
double bondage numbers for several classes of graphs, and we characterize
the class of γd-strongly stable graphs. In Section 3 we characterize the class
of trees T for which bd(T ) = 1.

2 Basic properties of double domination and

double bondage

In this and the following sections we assume that all graphs G are con-
nected and have order n ≥ 2. We begin with the following observations,
the majority of which were given in [10].

Observation 1 If v is a leaf of a graph G, then v is an element of every
γd(G)-set.

Observation 2 If v is a support vertex of a graph G, then v is an element
of every γd(G)-set.

Observation 3 If G′ = (V,E − E′) is a spanning subgraph of a graph
G = (V,E), then γd(G

′) ≥ γd(G).

Observation 4 For n ≥ 2 we have γd(Kn) = 2.
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Observation 5 For n ≥ 2 we have γd(Pn) = ⌊(2n+ 4)/3⌋.

Observation 6 For n ≥ 3 we have γd(Cn) = ⌊(2n+ 2)/3⌋.

Observation 7 For n ≥ 4 we have γd(Wn) = ⌊(n+ 4)/3⌋.

Observation 8 Let p and q be positive integers such that p ≤ q. Then

γd(Kp,q) =







q + 1 if p = 1;
3 if p = 2;
4 if p ≥ 3.

Since graphs with an isolated vertex do not have a double dominating
set, we do not consider removing edges that produce an isolated vertex.
The following three results are from [26].

Proposition 9 For n ≥ 2 we have

bd(Kn) =

{

0 if n = 2;
⌊n/2⌋ if n ≥ 3.

Proposition 10 For n ≥ 2 we have

bd(Pn) =

{

0 if n ≤ 4;
1 if n ≥ 5.

Proposition 11 For n ≥ 3 we have

bd(Cn) =

{

1 if n 6= 3k + 2;
2 if n = 3k + 2.

To the previous three results we can add the following one.

Proposition 12 For n ≥ 4 we have

bd(Wn) =







1 if n = 3k + 1 ≥ 7;
2 if n = 3k or n ≤ 5;
3 if n = 3k + 2 ≥ 8.

Proof. Let E(Wn) = {v1v2, v1v3, . . . , v1vn, v2v3, v3v4, . . . , vn−1vn, vnv2}.
Using Proposition 9 we get bd(W4) = bd(K4) = 2. By Observation 7 we
have γd(W5) = 3. Let us observe that removing any one of the edges does
not increase the double domination number as the vertices v1, v2, and v4
still form a double dominating set. We have γd(W5 − v1v2 − v2v3) = 4
> 3 = γd(W5). Therefore bd(W5) = 2.
Now let us assume that n ≥ 6. First assume that n = 3k + 1. Let

us remove the edge v1vn. We find a relation between the numbers γd(Wn
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−v1vn) and γd(Wn−2). Let us observe that there exists a γd(Wn−v1vn)-set
that does not contain the vertex vn. Let D be such a set. The vertex vn has
to be dominated twice, thus v2, vn−1 ∈ D. We have v1 ∈ D or vn−2 ∈ D as
the vertex vn−1 has to be dominated twice. Let us observe thatD\{vn−1} is
a DDS of the graph Wn−2. Therefore γd(Wn−2) ≤ γd(Wn−v1vn)−1. Now
we get γd(Wn − v1vn) ≥ γd(Wn−2) + 1 = ⌊(n+2)/3⌋+1 = ⌊(n+4)/3⌋+1
> ⌊(n+ 4)/3⌋ = γd(Wn). Therefore bd(Wn) = 1 if n = 3k + 1.
Now assume that n 6= 3k + 1. If we remove an edge incident with v1,

say v1v2, then we get γd(Wn−v1v2) = γd(Wn) as we can construct a γd(Wn)-
set that contains the vertices v3 and vn; such set is also a DDS of the
graph Wn − v1v2. If we remove an edge non-incident with v1, say v2v3,
then we get γd(Wn − v2v3) = γd(Wn) as we can construct a γd(Wn)-set
that does not contain the vertices v2 and v3; such set is also a DDS of the
graph Wn − v2v3. This implies that bd(Wn) 6= 1.
First, assume that n = 3k. Let us remove the edges vn−1vn and vnv2.

We find a relation between the numbers γd(Wn − vn−1vn − vnv2) and
γd(Wn−1). Let D be any γd(Wn − vn−1vn − vnv2)-set. By Observations 1
and 2 we have v1, vn ∈ D. The vertex v3 has to be dominated twice, thus
v3 ∈ D or v4 ∈ D. Let us observe that D \ {vn} is a DDS of the graph
Wn−1. Therefore γd(Wn−1) ≤ γd(Wn − vn−1vn − vnv2) − 1. Using Obser-
vation 7 we get γd(Wn − vn−1vn − vnv2) ≥ γd(Wn−1)+ 1 = ⌊(n+3)/3⌋+1
= ⌊(n+4)/3⌋+1 > ⌊(n+4)/3⌋ = γd(Wn). Therefore bd(Wn) = 2 if n = 3k.
Now let us assume that n = 3k + 2. It is not very difficult to ver-

ify that removing any two edges does not increase the double domination
number. This implies that bd(Wn) = 0 or bd(Wn) ≥ 3. Let us remove
the edges vn−2vn−1, vn−1vn, and v1vn. We find a relation between the
numbers γd(Wn − vn−2vn−1 − vn−1vn − v1vn) and γd(Wn). Let D be any
γd(Wn − vn−2vn−1 − vn−1vn − v1vn)-set. By Observations 1 and 2 we have
v1, v2, vn−1, vn ∈ D. Let us observe that D \ {vn−1, vn} is a DDS of the
graphWn−2. Therefore γd(Wn−2) ≤ γd(Wn−vn−2vn−1−vn−1vn−v1vn)−2.
Now we get γd(Wn − vn−2vn−1 − vn−1vn − v1vn) ≥ γd(Wn−2) + 2 = ⌊(n
+2)/3⌋ + 2 = ⌊(n + 5)/3⌋ + 1 = ⌊(n + 4)/3⌋ + 1 > ⌊(n + 4)/3⌋ = γd(Wn).
Therefore bd(Wn) = 3 if n = 3k + 2.

We now determine the double bondage numbers of complete bipartite
graphs.

Proposition 13 Let p and q be positive integers such that p ≤ q. Then

bd(Kp,q) =

{

3 if p = q = 3;
p− 1 otherwise.

Proof. Let E(Kp,q) = {aibj : 1 ≤ i ≤ p and 1 ≤ j ≤ q}. If p = 1, then
bd(Kp,q) = 0 = p − 1 as removing any edge produces an isolated vertex.
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Now assume that p = 2. By Observation 8 we have γd(K2,q) = 3. Let us
observe that γd(K2,q − a1b1) = 4 as the vertex b1 has to belong to every
DDS of the graph K2,q − a1b1. Thus bd(K2,q) = 1 = p− 1.
Now let us assume that p ≥ 3. By Observation 8 we have γd(K3,q) = 4.

If q = 3, then it is easy to verify that removing any two edges does not
increase the double domination number. This implies that bd(K3,3) = 0
or bd(K3,3) ≥ 3. Let us observe that γd(K3,3 − a1b1 − a1b2 − a2b1) = 5 > 4
= γd(K3,3). Therefore bd(K3,3) = 3. Now assume that q ≥ 4. Let
us observe that removing any p − 2 edges does not increase the double
domination number. We have γd(Kp,q − a1b1 − a2b1 − . . . − ap−1b1) = 5
as the vertex b1 has to belong to every DDS of the graph Kp,q − a1b1
−a2b1 − . . .− ap−1b1. Therefore bd(Kp,q) = p− 1 if p ≥ 3 and q ≥ 4.

We next present a characterization of the class of γd-strongly stable
graphs, that is, the graphs for which for every subset E′ ⊆ E, either
γd(G− E′) = γd(G) or δ(G− E′) = 0. We need the following lemma.

Lemma 14 Every graph G contains a spanning subgraph G′, in which ev-
ery vertex is a leaf or a support vertex.

Proof. Assume that some vertex of G is neither a leaf nor a support
vertex. Let e1 be an edge of G which is not incident to any leaf. Let
G1 = G − e1. If every vertex of G1 is a leaf or a support vertex, then
let G′ = G1; otherwise let G2 be a graph obtained from G1 by removing
an edge non-incident to any leaf. Let us observe that after a finite number
of analogical steps we get a graph G′ = Gk every vertex of which is a leaf
or a support vertex.

Theorem 15 For every graph G, the following conditions are equivalent:

• γd(G) = n;

• every vertex of G is a leaf or a support vertex;

• bd(G) = 0.

Proof. Harary and Haynes [10] proved that the first two conditions are
equivalent. We prove that the last two are also equivalent.
If every vertex of G is a leaf or a support vertex, then Observations 1

and 2 imply that γd(G) = n. We have bd(G) = 0 as the double domination
number cannot be increased.
Now assume that some vertex of G, say x, is neither a leaf nor a support

vertex. Thus x has at least two neighbors. Moreover, each one of these
neighbors has a neighbor other than x. It is not difficult to observe that
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V (G)\{x} is a DDS of the graphG. Therefore γd(G) ≤ n−1. By Lemma 14,
the graph G has a spanning subgraph G′, in which every vertex is a leaf
or a support vertex. We have γd(G

′) = n. This implies that bd(G) > 0.

A paired dominating set of a graph G is a dominating set of vertices
whose induced subgraph has a perfect matching. The paired domination
number of G, denoted by γpr(G), is the minimum cardinality of a paired
dominating set of G. The paired bondage number, denoted by bpr(G),
is the minimum cardinality among all sets of edges E′ ⊆ E such that
δ(G − E′) ≥ 1 and γpr(G − E′) > γpr(G). If for every E′ ⊆ E, either
γpr(G − E′) = γpr(G) or δ(G − E′) = 0, then we define bpr(G) = 0, and
we say that G is a γpr-strongly stable graph. Raczek [23] observed that
if H ⊆ G, then bpr(H) ≤ bpr(G). Let us observe that no result of such
type is possible for the double bondage. Consider the complete bipartite
graphs K3,3, K3,5, and K4,5. Obviously, K3,3 ⊆ K3,5 ⊆ K4,5. Using
Proposition 13 we get bd(K3,3) = 3 > 2 = bd(K3,5) < 3 = bd(K4,5).

3 A characterization of trees with bd(T ) = 1

The authors of [7] proved that the bondage number of any tree is either
one or two. In [26] it is observed that for any non-negative integer there
exists a tree such that its double bondage number equals that number. The
double bondage number of the subdivided star obtained fromK1,m ism−1.
Hartnell and Rall [12] characterized all trees with b(T ) = 2. The trees

with bd(T ) = 0 are characterized in Theorem 15. In this section we char-
acterize all trees with bd(T ) = 1.
First we need to define a tree G1, see Figure 1.

x

a

b

c

h

i
d

e

f

g

Figure 1: The tree G1

Let T0 be a family of trees, not containing P4, having a vertex adjacent
to a path P3, or a vertex adjacent to the tree G1 through the vertex x and
to a leaf or a support vertex.

Lemma 16 If T ∈ T0, then bd(T ) = 1.
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Proof. First assume that some vertex of T , say y, is adjacent to a path P3,
say v1v2v3. Let y and v1 be adjacent. Suppose that bd(T ) 6= 1. Thus
for every edge e of T we have γd(T − e) = γd(T ). Let T

′ = T − v2 − v3
and T ′′ = T ′ − v1. Since P4 /∈ T0, removing the edge yv1 does not produce
an isolated vertex. We have γd(T ) = γd(T − yv1) = γd(T

′′ ∪ P3) = γd(T
′′)

+γd(P3) = γd(T
′′) + 3. We also have γd(T ) = γd(T − v1v2) = γd(T

′ ∪ P2)
= γd(T

′)+γd(P2) = γd(T
′)+2. Now we get γd(T

′) = γd(T )−2 = γd(T
′′)+1.

This implies that there exists a γd(T
′′)-set that contains the vertex y. Let

D′′ be such a set. It is easy to observe that D′′ ∪ {v2, v3} is a DDS of the
tree T . Thus γd(T ) ≤ γd(T

′′) + 2, which contradicts γd(T ) = γd(T
′′) + 3.

Therefore bd(T ) = 1.
Now assume that some support vertex of T , say y, is adjacent to a treeG1

through the vertex x. Let z be a leaf adjacent to y. Let T ′ = T−b−c. LetD′

be any γd(T
′)-set. By Observations 1 and 2 we have e, g, z, i, d, f, y, h ∈ D′.

Some of the vertices a and x belongs to the set D′ as the vertex a has to
be dominated twice. Without loss of generality we assume that a ∈ D′.
Let us observe that D′ \ {a} ∪ {b, c} is DDS of the tree T . Therefore
γd(T ) ≤ γd(T

′)+1. Now we get γd(T −ab) = γd(T
′∪P2) = γd(T

′)+γd(P2)
= γd(T

′) + 2 ≥ γd(T ) + 1 > γd(T ). This implies that bd(T ) = 1.
Now assume that some vertex of T , say y, is adjacent to a support

vertex, say z, and to a tree G1 through the vertex x. Let k be a leaf
adjacent to z. If γd(T − ab) > γd(T ), then bd(T ) = 1. Now assume that
γd(T − ab) = γd(T ). Let T

′ = T − b − c. We get γd(T ) = γd(T − ab)
= γd(T

′ ∪ P2) = γd(T
′) + γd(P2) = γd(T

′) + 2. Let us observe that there
exists a γd(T

′)-set that does not contain the vertex a. Let D′ be such
a set. The vertex a has to be dominated twice, thus x ∈ D′. Obviously,
D′∪{b, c} is a DDS of the tree T . We have |D′∪{b, c}| = |D′|+2 = γd(T

′)+2
= γd(T ). This implies that D

′ ∪ {b, c} is a γd(T )-set, which contains the
vertex x. Now let D be any γd(T )-set that contains x. By Observations 1
and 2 we have b, d, f, g, h, i, k, z ∈ D. Let us observe that the set D does
not contain neither the vertex y nor its any neighbor other than x and z.
Otherwise D\{x} is a DDS of the tree T , a contradiction to the minimality
of D. Let v1 = x, v2, . . . , vdT (y)−1 be the neighbors of y other than z.
Let Ti denote the component of T − yvi, which contains the vertex vi.
By T ′′ we denote the component of T − yz, which contains y. Let us
observe that no γd(Ti)-set contains the vertex x, since the set D contains
the vertex x and it is minimal. Consequently, no γd(T )-set contains more
than two vertices from the closed neighborhood of the vertex y. Therefore
there does not exist a γd(T )-set D such that D ∩ V (T ′′) is a DDS of the
tree T ′′. This implies that γd(T

′′) > |D ∩ V (T ′′)|. Let us observe that
γd(T−T ′′) = |D∩V (T−T ′′)| as z is also a support vertex in the tree T−T ′′.
Now we get γd(T − yz) = γd(T

′′ ∪ (T − T ′′)) = γd(T
′′) + γd(T − T ′′)

= γd(T
′′)+|D∩V (T−T ′′)| > |D∩V (T ′′)|+|D∩V (T−T ′′)| = |D| = γd(T ).
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We conclude that bd(T ) = 1.

We characterize all trees with the double bondage number equaling one.
For this purpose we introduce a family of trees T which contains all trees
of the family T0, and trees that can be obtained as follows. Let T1 be
an element of T0. If k is a positive integer, then Tk+1 can be obtained
recursively from Tk by one of the following operations.

• Operation O1: Attach a vertex by joining it to a support vertex of Tk.

• Operation O2: Attach a path P2 by joining one of its vertices to
a vertex of Tk, which is a support vertex, or is adjacent to a support
vertex and to another vertex which has degree two.

• Operation O3: Attach a subdivided star by joining the vertex of min-
imum eccentricity to any vertex of Tk.

Now we prove that the double bondage number of every tree of the
family T is one.

Lemma 17 If T ∈ T , then bd(T ) = 1.

Proof. If T ∈ T0, then by Lemma 16 we have bd(T ) = 1. Now assume that
T ∈ T \T0. We use the induction on the number k of operations performed
to construct the tree T . Let k ≥ 2 be an integer. Assume that the result is
true for every tree T ′ = Tk of the family T constructed by k−1 operations.
Let T = Tk+1 be a tree of the family T constructed by k operations.
First assume that T is obtained from T ′ by operation O1. Let x be

the attached vertex, and let y be its neighbor. Let z be a leaf adjacent
to y and different from x. Let D′ be any γd(T

′)-set. By Observation 2 we
have y ∈ D′. It is easy to observe that D′ ∪ {x} is a DDS of the tree T .
Thus γd(T ) ≤ γd(T

′) + 1. The assumption bd(T
′) = 1 implies that there

is an edge e of T ′ such that γd(T
′ − e) > γd(T

′). Since z is a leaf of T ′,
we have e 6= yz. By Ty (T

′

y, respectively) we denote the component of T −e
(T ′−e, respectively) which contains the vertex y. Let Dy be any γd(Ty)-set.
By Observations 1 and 2 we have x, y, z ∈ Dy. It is easy to observe that
Dy \ {x} is a DDS of the tree T

′

y. Therefore γd(T
′

y) ≤ γd(Ty)− 1. Now we
get γd(T − e) = γd(T − e − Ty) + γd(Ty) ≥ γd(T − e − Ty) + γd(T

′

y) + 1
= γd(T

′− e−T ′

y)+ γd(T
′

y)+1 = γd(T
′− e)+1 > γd(T

′)+1 ≥ γd(T ). This
implies that bd(T ) = 1.
Now assume that T is obtained from T ′ by operation O2. The vertex

to which is attached P2 we denote by x. Let v1v2 denote the attached path.
Let v1 be joined to x. Let D

′ be any γd(T
′)-set. Obviously, D′ ∪ {v1, v2}

is a DDS of the tree T . Thus γd(T ) ≤ γd(T
′) + 2. If x is adjacent to
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a leaf, then we denote it by y. The assumption bd(T
′) = 1 implies that

there is an edge e of T ′ such that γd(T
′ − e) > γd(T

′). Since y is a leaf
of T ′, we have e 6= xy. By Tx (T

′

x, respectively) we denote the component
of T − e (T ′ − e, respectively) which contains the vertex x. Let Dx be
any γd(Tx)-set. By Observations 1 and 2 we have v1, v2, x, y ∈ Dx. It is
easy to observe that Dx \ {v1, v2} is a DDS of the tree T ′

x. Therefore
γd(T

′

x) ≤ γd(Tx) − 2. Now assume that x is adjacent to a support vertex,
say y, and to a vertex of degree two other than y, say z. The assumption
bd(T

′) = 1 implies that there is an edge e of T ′ such that γd(T
′ − e)

> γd(T
′). By Tx (T

′

x, respectively) we denote the component of T − e
(T ′−e, respectively) which contains the vertex x. Let D be any γd(Tx)-set.
By Observations 1 and 2 we have v1, v2, y ∈ Dx. At least one of the vertices
x and z belongs to the set Dx as the vertex z has to be dominated twice.
Let us observe that Dx \ {v1, v2} is a DDS of the tree T

′

x as the vertex x
is still dominated at least twice. Now we conclude that γd(T

′

x) ≤ γd(Tx)−2.
We get γd(T − e) = γd(T − e− Tx) + γd(Tx) ≥ γd(T − e− Tx) + γd(T

′

x) + 2
= γd(T

′− e−T ′

x)+ γd(T
′

x)+2 = γd(T
′− e)+2 > γd(T

′)+2 ≥ γd(T ). This
implies that bd(T ) = 1.
Now assume that T is obtained from T ′ by operation O3. Let x be

the vertex to which is attached the subdivided star, and let y denote its
central vertex. Let D′ be any γd(T

′)-set. It is easy to observe that D′

∪V (T −T ′)\{y} is a DDS of the tree T . Thus γd(T ) ≤ γd(T
′)+2dT (y)−2.

The assumption bd(T
′) = 1 implies that there is an edge e of T ′ such that

γd(T
′ − e) > γd(T

′). By Tx (T
′

x, respectively) we denote the component of
T −e (T ′−e, respectively) which contains the vertex x. Let us observe that
there exists a γd(Tx)-set that does not contain the vertex y. Let Dx be such
a set. Observations 1 and 2 imply that V (T −T ′)\{y} ⊆ Dx. Observe that
Dx∩V (T ′) is a DDS of the tree T ′

x. Therefore γd(T
′

x) ≤ γd(Tx)−2dT (y)+2.
Now we get γd(T − e) = γd(T − e−Tx)+ γd(Tx) ≥ γd(T − e−Tx)+ γd(T

′

x)
+2dT (y)−2 = γd(T

′−e−T ′

x)+γd(T
′

x)+2dT (y)−2 = γd(T
′−e)+2dT (y)−2

> γd(T
′) + 2dT (y)− 2 ≥ γd(T ). This implies that bd(T ) = 1.

Now we prove that if the double bondage number of a tree equals one,
then the tree belongs to the family T .

Lemma 18 Let T be a tree. If bd(T ) = 1, then T ∈ T .

Proof. Let n mean the number of vertices of the tree T . We proceed by
induction on this number. If diam(T ) ≤ 3, then Observations 1 and 2 imply
that γd(T ) = n as every vertex of T is a leaf or a support vertex. We have
bd(T ) = 0 as the double bondage number cannot be increased.
Now assume that diam(T ) ≥ 4. The result we obtain by the induction

on the number n. Assume that the lemma is true for every tree T ′ of order
n′ < n.
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First assume that some support vertex of T , say x, is strong. Let y
and z be leaves adjacent to x. Let T ′ = T − y. Let D be any γd(T )-
set. By Observations 1 and 2 we have x, y, z ∈ D. It is easy to observe
that D \ {y} is a DDS of the tree T ′. Therefore γd(T

′) ≤ γd(T ) − 1.
The assumption bd(T ) = 1 implies that there is an edge e of T such that
γd(T − e) > γd(T ). Since y is a leaf of T , we have e 6= xy. Consequently,
e ∈ E(T ′). By Tx (T

′

x, respectively) we denote the component of T − e
(T ′ − e, respectively) which contains the vertex x. Let D′

x be any γd(T
′

x)-
set. By Observation 2 we have x ∈ D′

x. It is easy to observe that D
′

x

∪{y} is a DDS of the tree Tx. Thus γd(Tx) ≤ γd(T
′

x) + 1. Now we get
γd(T

′ − e) = γd(T
′ − e − T ′

x) + γd(T
′

x) ≥ γd(T
′ − e − T ′

x) + γd(Tx) − 1
= γd(T − e− Tx) + γd(Tx)− 1 = γd(T − e)− 1 > γd(T )− 1 ≥ γd(T

′). This
implies that bd(T

′) = 1. By the inductive hypothesis we have T ′ ∈ T . The
tree T can be obtained from T ′ by operation O1. Thus T ∈ T . Henceforth,
we can assume that every support vertex of T is weak.
We now root T at a vertex r of maximum eccentricity diam(T ). Let t

be a leaf at maximum distance from r, v be the parent of t, u be the parent
of v, and w be the parent of u in the rooted tree. If diam(T ) ≥ 5, then
let d denote the parent of w. By Tx let us denote the subtree induced by
a vertex x and its descendants in the rooted tree T .
First assume that dT (u) = 2. If dT (w) = 1, then T = P4. We have

bd(T ) = 0, a contradiction. Now assume that dT (w) ≥ 2. The vertex w
is adjacent to a path P3 in T 6= P4, thus T ∈ T0 ⊆ T .
Now assume that dT (u) ≥ 3. Assume that some child of u, say x,

is a leaf. Let T ′ = T − Tv. Let D be any γd(T )-set. By Observations 1
and 2 we have t, x, v, u ∈ D. It is easy to observe that D \ {v, t} is a DDS
of the tree T ′. Therefore γd(T

′) ≤ γd(T ) − 2. The assumption bd(T ) = 1
implies that there is an edge e of T such that γd(T − e) > γd(T ). Since
the vertex t is a leaf of the tree T , we have e 6= vt. Let us observe that
e 6= uv. We have γd(T −uv) = γd(T

′∪P2) = γd(T
′)+2 ≤ γd(T ). Therefore

e 6= uv. Consequently, e ∈ E(T ′). By Tu (T
′

u, respectively) we denote the
component of T − e (T ′ − e, respectively) which contains the vertex u. Let
D′

u be any γd(T
′

u)-set. Obviously, D
′

u∪{v, t} is a DDS of the tree Tu. Thus
γd(Tu) ≤ γd(T

′

u) + 2. Now we get γd(T
′ − e) = γd(T

′ − e − T ′

u) + γd(T
′

u)
≥ γd(T

′−e−T ′

u)+γd(Tu)−2 = γd(T −e−Tu)+γd(Tu)−2 = γd(T −e)−2
> γd(T ) − 2 ≥ γd(T

′). This implies that bd(T
′) = 1. By the inductive

hypothesis we have T ′ ∈ T . The tree T can be obtained from T ′ by
operation O2. Thus T ∈ T .
Thus we can assume that all children of u are support vertices of degree

two. Let x be a child of u other than v. The leaf adjacent to x we denote
by y. First assume that dT (u) ≥ 4. Let k be a child of u other than v and x.
The leaf adjacent to k we denote by l. Let T ′ = T − Tu. Let us observe
that there exists a γd(T )-set that does not contain the vertex u. Let D be
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such a set. Observations 1 and 2 imply that V (Tu)\{u} ⊆ D. Observe that
D∩V (T ′) is a DDS of the tree T ′. Therefore γd(T

′) ≤ γd(T )− 2dT (u)+ 2.
The assumption bd(T ) = 1 implies that there is an edge e of T such that
γd(T −e) > γd(T ). Let us observe that e is not incident to the vertex u and
a child of u. Suppose otherwise. Without loss of generality we assume that
e = uv. Let T ′′ = T−Tv. Let D be any γd(T )-set. By Observations 1 and 2
we have t, v, x, k ∈ D. Let us observe that D\{v, t} is a DDS of the tree T ′′.
Therefore γd(T

′′) ≤ γd(T ) − 2. Now we get γd(T − uv) = γd(T
′′ ∪ P2)

= γd(T
′′)+ 2 ≤ γd(T ), a contradiction. Therefore e is not an edge between

the vertex u and a child of u. The other edges incident to the children
of u are incident to leaves. Therefore e is not incident to any child of u.
We have γd(T −wu) = γd(T

′∪Tu) = γd(T
′)+γd(Tu) = γd(T

′)+2dT (u)−2
≤ γd(T ). Therefore e 6= wu. Now we conclude that e ∈ E(T ′). By Tw

(T ′

w, respectively) we denote the component of T − e (T ′ − e, respectively)
which contains the vertex w. Let D′

w be any γd(T
′

w)-set. It is easy to
observe that D′

w ∪ V (Tu) \ {u} is a DDS of the tree Tw. Thus γd(Tw)
≤ γd(T

′

w) + 2dT (u)− 2. Now we get γd(T
′ − e) = γd(T

′ − e− T ′

w) + γd(T
′

w)
≥ γd(T

′ − e − T ′

w) + γd(Tw) − 2dT (u) + 2 = γd(T − e − Tw) + γd(Tw)
−2dT (u)+2 = γd(T − e)−2dT (u)+2 > γd(T )−2dT (u)+2 ≥ γd(T

′). This
implies that bd(T

′) = 1. By the inductive hypothesis we have T ′ ∈ T . The
tree T can be obtained from T ′ by operation O3. Thus T ∈ T .
Now assume that dT (u) = 3. First assume that dT (w) = 2, or there

is a child of w other than u, say k, such that the distance of w to the
most distant vertex of Tk is three or one. Then it suffices to consider the
possibilities when Tk is isomorphic to Tu, or k is a leaf. Let T

′ = T−Tu. Let
us observe that there exists a γd(T )-set that does not contain the vertex u.
Let D be such a set. By Observations 1 and 2 we have t, y, v, x ∈ D.
Observe that D \ {v, t, x, y} is a DDS of the tree T ′. Therefore γd(T

′)
≤ γd(T )−4. The assumption bd(T ) = 1 implies that there is an edge e of T
such that γd(T −e) > γd(T ). If Tk is isomorphic to Tu, then without loss of
generality we may assume that e /∈ E(Tu) ∪ {wu}. Now consider the cases
when dT (w) = 2 or k is a leaf. We have e 6= vt, xy as the vertices t and y
are leaves of the tree T . Let us observe that e is not incident to u. We have
γd(T − wu) = γd(T

′ ∪ P5) = γd(T
′) + γd(P5) = γd(T

′) + 4 ≤ γd(T ). Now
suppose that e ∈ {uv, ux}. Without loss of generality we may assume that
e = uv. Let T ′′ = T − Tv. Let D be a γd(T )-set that does not contain the
vertex u. By Observations 1 and 2 we have t, v, x ∈ D. If k is a leaf, then
Observation 2 implies that w ∈ D. If dT (w) = 2, then also the vertex w
belongs to the set D as it has to be dominated twice. Let us observe that
D \ {v, t} is a DDS of the tree T ′′. Therefore γd(T

′′) ≤ γd(T )− 2. Now we
get γd(T − uv) = γd(T

′′ ∪ P2) = γd(T
′′) + γd(P2) = γd(T

′′) + 2 ≤ γd(T ),
a contradiction. We conclude that e ∈ E(T ′). By Tw (T

′

w, respectively)
we denote the component of T − e (T ′ − e, respectively) which contains
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the vertex w. Let D′

w be any γd(T
′

w)-set. It is easy to observe that D
′

w

∪{v, t, x, y} is a DDS of the tree Tw. Thus γd(Tw) ≤ γd(T
′

w) + 4. Now we
get γd(T

′ − e) = γd(T
′ − e− T ′

w) + γd(T
′

w) ≥ γd(T
′ − e− T ′

w) + γd(Tu)− 4
= γd(T − e− Tw) + γd(Tw)− 4 = γd(T − e)− 4 > γd(T )− 4 ≥ γd(T

′). This
implies that bd(T

′) = 1. By the inductive hypothesis we have T ′ ∈ T . The
tree T can be obtained from T ′ by operation O3. Thus T ∈ T .
Now assume that every child of w other than u is a support vertex of

degree two. Let k be a child of w other than u. The leaf adjacent to k
we denote by l. First assume that dT (w) ≥ 5. Let m and q be children
of w other than u and k. Let T ′ = T − Tk. Let D be any γd(T )-set.
By Observations 1 and 2 we have k, l,m, q ∈ D. It is easy to observe
that D \ {k, l} is a DDS of the tree T ′. Therefore γd(T

′) ≤ γd(T ) − 2.
The assumption bd(T ) = 1 implies that there is an edge e of T such that
γd(T−e) > γd(T ). Since l is a leaf of T , we have e 6= kl. Let us observe that
e 6= wk. We have γd(T −wk) = γd(T

′ ∪P2) = γd(T
′)+ γd(P2) = γd(T

′)+2
≤ γd(T ). Now we conclude that e ∈ E(T ′). By Tw (T

′

w, respectively) we
denote the component of T − e (T ′ − e, respectively) which contains the
vertex w. Let D′

w be any γd(T
′

w)-set. Obviously, D
′

w∪{k, l} is a DDS of the
tree Tw. Thus γd(Tw) ≤ γd(T

′

w)+2. Now we get γd(T
′−e) = γd(T

′−e−T ′

w)
+γd(T

′

w) ≥ γd(T
′ − e − T ′

w) + γd(Tw) − 2 = γd(T − e − Tw) + γd(Tw) − 2
= γd(T −e)−2 > γd(T )−2 ≥ γd(T

′). This implies that bd(T
′) = 1. By the

inductive hypothesis we have T ′ ∈ T . The tree T can be obtained from T ′

by operation O2. Thus T ∈ T .
Now assume that dT (w) = 3. Let T ′ = T −Tu. The vertex d is adjacent

to a path P3 in T ′ 6= P4, thus T
′ ∈ T0 ⊆ T . The tree T can be obtained

from T ′ by operation O3. Thus T ∈ T .
Now assume that dT (w) = 4. Let m be the child of w other than u

and k. The leaf adjacent to m we denote by p. First assume that there is
a child of d other than w, say a, such that the distance of d to the most
distant vertex of Ta is four. It suffices to consider only the possibility when
Ta is isomorphic to Tw. Let T

′ = T −Tu. Similarly as earlier we get γd(T
′)

≤ γd(T ) − 4. The assumption bd(T ) = 1 implies that there is an edge e
of T such that γd(T − e) > γd(T ). Because of the similarity between the
subtrees Tw and Ta, without loss of generality we assume that e /∈ E(Tw).
Thus e ∈ E(T ′). By Tw (T

′

w, respectively) we denote the component of T−e
(T ′ − e, respectively) which contains the vertex w. Let D′

w be any γd(T
′

w)-
set. It is easy to observe that D′

w∪{v, t, x, y} is a DDS of the tree Tw. Thus
γd(Tw) ≤ γd(T

′

w) + 4. Now we get γd(T
′ − e) = γd(T

′ − e − T ′

w) + γd(T
′

w)
≥ γd(T

′−e−T ′

w)+γd(Tw)−4 = γd(T −e−Tw)+γd(Tw)−4 = γd(T −e)−4
> γd(T ) − 4 ≥ γd(T

′). This implies that bd(T
′) = 1. By the inductive

hypothesis we have T ′ ∈ T . The tree T can be obtained from T ′ by
operation O3. Thus T ∈ T .
Now assume that there is a child of d, say a, such that the distance of d
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to the most distant vertex of Ta is three. It suffices to consider only the
possibility when Ta is isomorphic to Tu. Let b and q denote the children
of a. The leaf adjacent to b we denote by c, and the leaf adjacent to q we
denote by z. Let T ′ = T − Ta. Let us observe that there exists a γd(T )-set
that does not contain the vertex a. Let D be such a set. By Observations 1
and 2 we have b, c, q, z ∈ D. Observe that D \ {b, c, q, z} is a DDS of the
tree T ′. Therefore γd(T

′) ≤ γd(T )− 4. The assumption bd(T ) = 1 implies
that there is an edge e of T such that γd(T − e) > γd(T ). First assume
that e ∈ E(T − T ′). Let T ′′ be a tree obtained from T by replacing the
edge uw with ua. Let us observe that there exists a γd(T

′′ − e)-set that
does not contain the vertex u. Let D′′ be such a set. It is easy to observe
that D′′ is a DDS of the tree T − e. Therefore γd(T − e) ≤ γd(T

′′ − e).
Similarly we conclude that γd(T

′′ − e) ≤ γd(T − e). This implies that
γd(T − e) = γd(T

′′ − e). Let e′ be an edge of Tw − Tu corresponding to
e in the subtree Ta. Let us observe that the graphs T

′′ − e and T − e′

are isomorphic. Therefore γd(T
′′ − e) = γd(T − e′), and consequently,

γd(T−e′) = γd(T−e). This implies that we may assume that e ∈ E(T ′). By
Td (T

′

d, respectively) we denote the component of T−e (T ′−e, respectively)
which contains the vertex d. Let D′

d be any γd(T
′

d)-set. It is easy to observe
that D′

d∪{b, c, q, z} is a DDS of the tree Td. Thus γd(Td) ≤ γd(T
′

d)+4. Now
we get γd(T

′ − e) = γd(T
′ − e−T ′

d)+ γd(T
′

d) ≥ γd(T
′ − e−T ′

d)+ γd(Td)− 4
= γd(T − e− Td) + γd(Td)− 4 = γd(T − e)− 4 > γd(T )− 4 ≥ γd(T

′). This
implies that bd(T

′) = 1. By the inductive hypothesis we have T ′ ∈ T . The
tree T can be obtained from T ′ by operation O3. Thus T ∈ T .
Now assume that there is a child of d, say a, such that the distance of d

to the most distant vertex of Ta is two or one. Thus a is a support vertex
or a leaf. Let us observe that d is adjacent to a tree G1 through the vertex
x and to a support vertex or a leaf. Thus T ∈ T0 ⊆ T .
Now assume that dT (d) = 2. Let T ′ = T −Tk. Let D be any γd(T )-set.

By Observations 1 and 2 we have k, l,m ∈ D. Some of the vertices d and w
belongs to the set D as the vertex d has to be dominated twice. Let us
observe thatD\{k, l} is a DDS of the tree T ′. Therefore γd(T

′) ≤ γd(T )−2.
Similarly as when dT (w) ≥ 5, we conclude that bd(T

′) = 1. By the inductive
hypothesis we have T ′ ∈ T . The tree T can be obtained from T ′ by
operation O2. Thus T ∈ T .

As an immediate consequence of Lemmas 17 and 18, we have the fol-
lowing characterization of trees with the double bondage number equaling
one.

Theorem 19 Let T be a tree. Then bd(T ) = 1 if and only if T ∈ T .

It is an open problem to characterize all graphs with the double bondage
number equaling one.
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Problem 20 Characterize graphs G such that bd(G) = 1.
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