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Abstract

For a graph G = (V,E), a subset D ⊆ V (G) is a dominating set
if every vertex of V (G) \ D has a neighbor in D, while it is a total
outer-independent dominating set if every vertex of G has a neigh-
bor in D, and the set V (G) \ D is independent. The domination
(total outer-independent domination, respectively) number of G is
the minimum cardinality of a dominating (total outer-independent
dominating, respectively) set of G. We characterize all trees with
equal domination and total outer-independent domination numbers.
Keywords: domination, total outer-independent domination, total
domination, tree.
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1 Introduction

Let G = (V,E) be a graph. By the neighborhood of a vertex v of G we
mean the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v,
denoted by dG(v), is the cardinality of its neighborhood. By a leaf we mean
a vertex of degree one, while a support vertex is a vertex adjacent to a leaf.
We say that a support vertex is strong (weak, respectively) if it is adjacent
to at least two leaves (exactly one leaf, respectively). We say that a subset
of V (G) is independent if there is no edge between any two vertices of this
set. The path on n vertices we denote by Pn. Let T be a tree, and let v be
a vertex of T . We say that v is adjacent to a tree H if there is a neighbor
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of v, say x, such that the tree resulting from T by removing the edge vx,
and which contains the vertex x, is a treeH. By a star we mean a connected
graph in which exactly one vertex has degree greater than one. By a double
star we mean a graph obtained from a star by joining a positive number of
vertices to one of its leaves.
A subset D ⊆ V (G) is a dominating set, abbreviated DS, of G if every

vertex of V (G) \ D has a neighbor in D. The domination number of G,
denoted by γ(G), is the minimum cardinality of a dominating set of G.
A dominating set of G of minimum cardinality is called a γ(G)-set. For
a comprehensive survey of domination in graphs, see [11, 12].
A subset D ⊆ V (G) is a total dominating set of G if every vertex of G

has a neighbor in D, while it is a total outer-independent dominating set,
abbreviated TOIDS, of G if additionally the set V (G) \D is independent.
The total outer-independent domination number of G, denoted by γoi

t (G),
is the minimum cardinality of a total outer-independent dominating set
of G. A total outer-independent dominating set of G of minimum cardinal-
ity is called a γoi

t (G)-set. Total domination was introduced by Cockayne,
Dawes, and Hedetniemi [5], and further studied for example [1–4, 6–10, 13,
14, 16, 17]. The study of total outer-independent domination in graphs was
initiated in [15].
Trees with equal domination and total domination numbers were char-

acterized in [17].
We characterize all trees with equal domination and total outer-indepen-

dent domination numbers.

2 Results

Since the one-vertex graph does not have total outer-independent domi-
nating set, in this paper, by a tree we mean only a connected graph with
no cycle, and which has at least two vertices.
We begin with the following straightforward observations.

Observation 1 Every support vertex of a graph G is in every γoi
t (G)-set.

Observation 2 For every graph G of diameter at least three there exists
a γoi

t (G)-set that contains no leaf.

Observation 3 For every graph G of diameter at least two there exists
a γ(G)-set that contains every support vertex.

Observation 4 For every graph G we have γoi
t (G) ≥ γ(G).

We characterize all trees with equal domination and total outer-indepen-
dent domination numbers. For this purpose we introduce a family T of trees
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T = Tk that can be obtained as follows. Let T1 be a path P4. If k is
a positive integer, then Tk+1 can be obtained recursively from Tk by one of
the following operations.

• Operation O1: Attach a vertex by joining it to any support vertex
of Tk.

• Operation O2: Attach a path P2 by joining its any vertex to a vertex
of Tk adjacent to a support vertex of degree two.

• Operation O3: Attach a path P4 by joining one of the support vertices
to a vertex of Tk which is not a leaf, and is adjacent to a support
vertex.

• Operation O4: Attach a vertex by joining it to a leaf of Tk adjacent
to a strong support vertex.

• Operation O5: Attach a double star with five vertices by joining one
of the leaves adjacent to the strong support vertex to a vertex of Tk

adjacent to a double star with five vertices through a leaf adjacent to
the strong support vertex.

• Operation O6: Attach a double star with five vertices by joining one
of the leaves adjacent to the strong support vertex to a vertex of Tk

adjacent to a support vertex of degree two.

• Operation O7: Attach a path P4 by joining one of the support vertices
to a leaf of Tk adjacent to a strong support vertex.

Now we prove that for every tree of the family T , the domination and
the total outer-independent domination numbers are equal.

Lemma 5 If T ∈ T , then γoi
t (T ) = γ(T ).

Proof. We use the induction on the number k of operations performed to
construct the tree T . If T = T1 = P4, then obviously γ

oi
t (T ) = 2 = γ(T ).

Let k ≥ 2 be an integer. Assume that the result is true for every tree
T ′ = Tk of the family T constructed by k− 1 operations. Let T = Tk+1 be
a tree of the family T constructed by k operations.
First assume that T is obtained from T ′ by operation O1. The attached

vertex we denote by x. Let y be its neighbor. Let D′ be any γoi
t (T ′)-set.

By Observation 1 we have y ∈ D′. It is easy to see that D′ is a TOIDS of
the tree T . Thus γoi

t (T ) ≤ γoi
t (T ′). Now let D be a γ(T )-set that contains

every support vertex. The set D is minimal, thus x /∈ D. Obviously,
D is a DS of the tree T ′. Therefore γ(T ′) ≤ γ(T ). Now we get γoi

t (T )

3



≤ γoi
t (T ′) = γ(T ′) ≤ γ(T ). On the other hand, by Observation 4 we have

γoi
t (T ) ≥ γ(T ). This implies that γoi

t (T ) = γ(T ).
Now assume that T is obtained from T ′ by operation O2. The vertex

to which is attached P2 we denote by x. Let v1v2 be the attached path.
Let v1 be joined to x. Let y be a support vertex of degree two adjacent
to x and different from v1. Let D

′ be a γoi
t (T ′)-set that contains no leaf.

The vertex y has to have a neighbor in D′, thus x ∈ D′. It is easy to
see that D′ ∪ {v1} is a TOIDS of the tree T . Thus γ

oi
t (T ) ≤ γoi

t (T ′) + 1.
Now let D be a γ(T )-set that contains every support vertex. The set D is
minimal, thus v2 /∈ D. Let us observe that D \ {v1} is a DS of the tree T

′

as the vertex x has a neighbor in D \ {v1}. Therefore γ(T
′) ≤ γ(T ) − 1.

Now we get γoi
t (T ) ≤ γoi

t (T ′) + 1 = γ(T ′) + 1 ≤ γ(T ). This implies that
γoi
t (T ) = γ(T ).
Now assume that T is obtained from T ′ by operation O3. The vertex to

which is attached P4 we denote by x. Let v1v2v3v4 be the attached path.
Let v2 be joined to x. Let D

′ be any γoi
t (T ′)-set. It is easy to observe that

D′ ∪{v2, v3} is a TOIDS of the tree T . Thus γ
oi
t (T ) ≤ γoi

t (T ′)+2. Now let
D be a γ(T )-set that contains every support vertex. The set D is minimal,
thus v1, v4 /∈ D. Let us observe that D \ {v2, v3} is a DS of the tree T

′ as
the vertex x has a neighbor in D \ {v2, v3}. Therefore γ(T

′) ≤ γ(T ) − 2.
Now we get γoi

t (T ) ≤ γoi
t (T ′) + 2 = γ(T ′) + 2 ≤ γ(T ). This implies that

γoi
t (T ) = γ(T ).
Now assume that T is obtained from T ′ by operation O4. Let x be

the attached vertex, and let y be its neighbor. The neighbor of y other
than x we denote by z. Let D′ be a γoi

t (T ′)-set that contains no leaf. By
Observation 1 we have z ∈ D′. It is easy to observe thatD′∪{y} is a TOIDS
of the tree T . Thus γoi

t (T ) ≤ γoi
t (T ′) + 1. Now let D be a γ(T )-set that

contains every support vertex. The set D is minimal, thus x /∈ D. Let us
observe that D \ {y} is a DS of the tree T ′. Therefore γ(T ′) ≤ γ(T ) − 1.
Now we get γoi

t (T ) ≤ γoi
t (T ′) + 1 = γ(T ′) + 1 ≤ γ(T ). This implies that

γoi
t (T ) = γ(T ).
Now assume that T is obtained from T ′ by operation O5. The vertex

to which is attached the double star we denote by x. Let v1 be the leaf
of the double star which is joined to x. The neighbor of v1 other than x
we denote by v2. Let v3 be the weak support vertex of the double star.
The leaf adjacent to v3 we denote by v4. The remaining vertex of the
double star we denote by v5. Let u1 be a neighbor of x which is a leaf
of a double star with five vertices adjacent to the strong support vertex.
The remaining vertices of this double star we denote similarly. Let us
observe that there exists a γoi

t (T ′)-set that does not contain the vertices
u1, u4, and u5. Let D

′ be such a set. The set V (T ′) \D′ is independent,
thus x ∈ D′. It is easy to observe that D′ ∪ {v2, v3} is a TOIDS of the
tree T . Thus γoi

t (T ) ≤ γoi
t (T ′) + 2. Now let us observe that there exists
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a γ(T )-set that contains every support vertex, and does not contain the
vertex v1. Let D be such a set. The set D is minimal, thus v4, v5 /∈ D.
Observe that D\{v2, v3} is a DS of the tree T

′. Therefore γ(T ′) ≤ γ(T )−2.
Now we get γoi

t (T ) ≤ γoi
t (T ′) + 2 = γ(T ) + 2 ≤ γ(T ′). This implies that

γoi
t (T ) = γ(T ).
Now assume that T is obtained from T ′ by operation O6. The vertex

to which is attached the double star we denote by x. Let v1 be the leaf of
the double star which is joined to x. The neighbor of v1 other than x we
denote by v2. Let v3 be the weak support vertex of the double star. The leaf
adjacent to v3 we denote by v4. The remaining vertex of the double star
we denote by v5. Let y be a support vertex of degree two adjacent to x.
Let D′ be a γoi

t (T ′)-set that contains no leaf. The vertex y has to have
a neighbor in D′, thus x ∈ D′. It is easy to observe that D′ ∪ {v2, v3} is
a TOIDS of the tree T . Thus γoi

t (T ) ≤ γoi
t (T ′) + 2. Now let us observe

that there exists a γ(T )-set that contains every support vertex, and does
not contain the vertex v1. Let D be such a set. The set D is minimal, thus
v4, v5 /∈ D. Observe that D \ {v2, v3} is a DS of the tree T

′. Therefore
γ(T ′) ≤ γ(T ) − 2. Now we get γoi

t (T ) ≤ γoi
t (T ′) + 2 = γ(T ′) + 2 ≤ γ(T ′).

This implies that γoi
t (T ) = γ(T ).

Now assume that T is obtained from T ′ by operation O7. Similarly as
when considering the operation O3 we conclude that γ

oi
t (T ) ≤ γoi

t (T ′) + 2
and γ(T ′) ≤ γ(T )−2. Now we get γoi

t (T ) ≤ γoi
t (T ′)+2 = γ(T ′)+2 ≤ γ(T ).

This implies that γoi
t (T ) = γ(T ).

Now we prove that if the domination and the total outer-independent
domination numbers of a tree are equal, then the tree belongs to the fam-
ily T .

Lemma 6 Let T be a tree. If γoi
t (T ) = γ(T ), then T ∈ T .

Proof. Let n mean the number of vertices of the tree T . We proceed
by induction on this number. If diam(T ) = 1, then T = P2. We have
γoi
t (T ) = 2 > 1 = γ(T ). Now assume that diam(T ) = 2. Thus T is a star.
We have γoi

t (T ) = 2 > 1 = γ(T ).
Now assume that diam(T ) ≥ 3. Thus the order n of the tree T is at

least four. The result we obtain by the induction on the number n. Assume
that the lemma is true for every tree T ′ of order n′ < n.
First assume that some support vertex of T , say x, is strong. Let y be

a leaf adjacent to x. Let T ′ = T − y. Let D′ be a γ(T ′)-set that contains
every support vertex. It is easy to see that D′ is a DS of the tree T . Thus
γ(T ) ≤ γ(T ′). Now let D be a γoi

t (T )-set that contains no leaf. Obviously,
D is a TOIDS of the tree T ′. Therefore γoi

t (T ′) ≤ γoi
t (T ). Now we get

γoi
t (T ′) ≤ γoi

t (T ) = γ(T ) ≤ γ(T ′). On the other hand, by Observation 4
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we have γoi
t (T ′) ≥ γ(T ′). This implies that γoi

t (T ′) = γ(T ′). By the
inductive hypothesis we have T ′ ∈ T . The tree T can be obtained from T ′

by operation O1. Thus T ∈ T . Henceforth, we can assume that every
support vertex of T is weak.
We now root T at a vertex r of maximum eccentricity diam(T ). Let t

be a leaf at maximum distance from r, v be the parent of t, and u be the
parent of v in the rooted tree. If diam(T ) ≥ 4, then let w be the parent
of u. If diam(T ) ≥ 5, then let d be the parent of w. If diam(T ) ≥ 6, then let
e be the parent of d. By Tx let us denote the subtree induced by a vertex x
and its descendants in the rooted tree T .
Assume that dT (u) = 2. First assume that there is a child of w other

than u, say k, such that the distance of w to the most distant vertex of Tk

is three. Let l be a support vertex which is a child of k. The leaf adjacent
to l we denote by m. Let T ′ = T − Tu. Let D

′ be any γ(T ′)-set. It is easy
to see that D′ ∪{v} is a DS of the tree T . Thus γ(T ) ≤ γ(T ′)+ 1. Now let
D be a γoi

t (T )-set that contains no leaf. By Observation 1 we have v ∈ D.
Each one of the vertices v and l has to have a neighbor in D, thus u, k ∈ D.
Let us observe that D \ {u, v} is a TOIDS of the tree T ′ as the vertex w
has a neighbor in D \ {u, v}. Therefore γoi

t (T ′) ≤ γoi
t (T ) − 2. Now we get

γoi
t (T ′) ≤ γoi

t (T )− 2 = γ(T )− 2 ≤ γ(T ′)− 1 < γ(T ′), a contradiction.
Now assume that there is a child of w, say k, such that the distance

of w to the most distant vertex of Tk is two. Thus k is a support vertex.
Let T ′ = T − Tu. Let D

′ be any γ(T ′)-set. It is easy to see that D′ ∪ {v}
is a DS of the tree T . Thus γ(T ) ≤ γ(T ′) + 1. Now let D be a γoi

t (T )-set
that contains no leaf. By Observation 1 we have v, k ∈ D. The vertex v
has to have a neighbor in D, thus u ∈ D. Let us observe that D \ {u, v}
is a TOIDS of the tree T ′ as the vertex w has a neighbor in D \ {u, v}.
Therefore γoi

t (T ′) ≤ γoi
t (T )−2. Now we get γoi

t (T ′) ≤ γoi
t (T )−2 = γ(T )−2

≤ γ(T ′)− 1 < γ(T ′), a contradiction.
Now assume that some child of w, say k, is a leaf. Let T ′ = T−t. Let D′

be a γ(T ′)-set that contains every support vertex. The set D′ is minimal,
thus v /∈ D. It is easy to observe that D′ \ {u} ∪ {v} is a DS of the tree T .
Thus γ(T ) ≤ γ(T ′). Now let D be a γoi

t (T )-set that contains no leaf. By
Observation 1 we have v, w ∈ D. The vertex v has to have a neighbor
in D, thus u ∈ D. It is easy to observe that D \ {v} is a TOIDS of the
tree T ′. Therefore γoi

t (T ′) ≤ γoi
t (T )− 1. Now we get γoi

t (T ′) ≤ γoi
t (T )− 1

= γ(T )− 1 ≤ γ(T ′)− 1 < γ(T ′), a contradiction.
If dT (w) = 1, then T = P4 = T1 ∈ T . Now assume that dT (w) = 2.

If dT (d) = 1, then T = P5. We have γoi
t (T ) = 3 > 2 = γ(T ). Now

assume that dT (d) ≥ 2. Let T ′ = T − Tu. Let D
′ be any γ(T ′)-set. It is

easy to see that D′ ∪ {v} is a DS of the tree T . Thus γ(T ) ≤ γ(T ′) + 1.
Now let us observe that there exists a γoi

t (T )-set that does not contain
the vertices t and w. Let D be such a set. By Observation 1 we have

6



v ∈ D. The vertex v has to have a neighbor in D, thus u ∈ D. We have
d ∈ D as the set V (T ) \D is independent. Let us observe that D \ {u, v}
is a TOIDS of the tree T ′ as the vertex w has a neighbor in D \ {u, v}.
Therefore γoi

t (T ′) ≤ γoi
t (T )−2. Now we get γoi

t (T ′) ≤ γoi
t (T )−2 = γ(T )−2

≤ γ(T ′)− 1 < γ(T ′), a contradiction.
Now assume that dT (u) ≥ 3. Assume that among the children of u

there is a support vertex, say x, different from v. Let T ′ = T − Tv. Let D
′

be any γ(T ′)-set. It is easy to see that D′ ∪ {v} is a DS of the tree T .
Thus γ(T ) ≤ γ(T ′) + 1. Now let D be a γoi

t (T )-set that contains no leaf.
By Observation 1 we have v, x ∈ D. Let us observe that D\{v} is a TOIDS
of the tree T ′ as the vertex u has a neighbor in D \ {v}. Therefore γoi

t (T ′)
≤ γoi

t (T ) − 1. Now we get γoi
t (T ′) ≤ γoi

t (T )− 1 = γ(T ) − 1 ≤ γ(T ′). This
implies that γoi

t (T ′) = γ(T ′). By the inductive hypothesis we have T ′ ∈ T .
The tree T can be obtained from T ′ by operation O2. Thus T ∈ T .
Thus we can assume that dT (u) = 3 and the child of u different from v,

say x, is a leaf. First assume that some child of w other than u, say k,
is a support vertex. Let T ′ = T − Tu. Let D

′ be any γ(T ′)-set. It is easy
to observe that D′ ∪ {u, v} is a DS of the tree T . Thus γ(T ) ≤ γ(T ′) + 2.
Now let D be a γoi

t (T )-set that contains no leaf. By Observation 1 we have
u, v, k ∈ D. Let us observe that D \ {u, v} is a TOIDS of the tree T ′ as the
vertex w has a neighbor in D \ {u, v}. Therefore γoi

t (T ′) ≤ γoi
t (T ) − 2.

Now we get γoi
t (T ′) ≤ γoi

t (T ) − 2 = γ(T ) − 2 ≤ γ(T ′). This implies that
γoi
t (T ′) = γ(T ′). By the inductive hypothesis we have T ′ ∈ T . The tree T
can be obtained from T ′ by operation O3. Thus T ∈ T .
Let us observe that we can assume that all children of w other than u

are leaves. Let k be a leaf which is a child of w. Let T ′ = T − t. Let D′

be a γ(T ′)-set that contains every support vertex. The set D′ is minimal,
thus v /∈ D′. It is easy to see that D′ ∪ {v} is a DS of the tree T . Thus
γ(T ) ≤ γ(T ′) + 1. Now let D be a γoi

t (T )-set that contains no leaf.
By Observation 1 we have v, u, w ∈ D. Let us observe that D \ {v} is
a TOIDS of the tree T ′. Therefore γoi

t (T ′) ≤ γoi
t (T ) − 1. Now we get

γoi
t (T ′) ≤ γoi

t (T )−1 = γ(T )−1 ≤ γt(T
′). This implies that γoi

t (T ′) = γ(T ′).
By the inductive hypothesis we have T ′ ∈ T . The tree T can be obtained
from T ′ by operation O4. Thus T ∈ T .
If dT (w) = 1, then let T ′ = T − x. We have T ′ = P4 = T1 ∈ T . The

tree T can be obtained from T ′ by operation O1. Thus T ∈ T . Now assume
that dT (w) = 2. First assume that there is a child of d other than w, say k,
such that the distance of d to the most distant vertex of Tk is four. It
suffices to consider only the possibility when Tk is isomorphic to Tw. Let
T ′ = T −Tw. Let D

′ be any γ(T ′)-set. It is easy to observe that D′∪{u, v}
is a DS of the tree T . Thus γ(T ) ≤ γ(T ′)+2. Now let us observe that there
exists a γoi

t (T )-set that does not contain the vertex w, and does not contain
any leaf. Let D be such a set. By Observation 1 we have u, v ∈ D. Observe
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that D \ {u, v} is a TOIDS of the tree T ′. Therefore γoi
t (T ′) ≤ γoi

t (T )− 2.
Now we get γoi

t (T ′) ≤ γoi
t (T ) − 2 = γ(T ) − 2 ≤ γ(T ′). This implies that

γoi
t (T ′) = γ(T ′). By the inductive hypothesis we have T ′ ∈ T . The tree T
can be obtained from T ′ by operation O5. Thus T ∈ T .
Now assume that there is a child of d, say k, such that the distance of d

to the most distant vertex of Tk is three. It suffices to consider only the
possibilities when Tk is isomorphic to Tu, or Tk is a path P3. First assume
that Tk is isomorphic to Tu. The child of k which is a support vertex we
denote by l. The leaf adjacent to l we denote bym. Let T ′ = T−m. Let D′

be a γ(T ′)-set that contains every support vertex. The set D′ is minimal,
thus l /∈ D′. It is easy to see that D′ ∪ {l} is a DS of the tree T . Thus
γ(T ) ≤ γ(T ′) + 1. Now let us observe that there exists a γoi

t (T )-set that
does not contain the vertex w, and does not contain any leaf. Let D be such
a set. By Observation 1 we have l ∈ D. The set V (T ) \D is independent,
thus d ∈ D. Let us observe that D \ {l} is a TOIDS of the tree T ′ as
the vertex k has a neighbor in D \ {l}. Therefore γoi

t (T ′) ≤ γoi
t (T ) − 1.

Now we get γoi
t (T ′) ≤ γoi

t (T ) − 1 = γ(T ) − 1 ≤ γ(T ′). This implies that
γoi
t (T ′) = γ(T ′). By the inductive hypothesis we have T ′ ∈ T . The tree T
can be obtained from T ′ by operation O4. Thus T ∈ T .
Now assume that Tk is a path P3, say klm. Let T

′ = T − Tu −m. Let
D′ be a γ(T ′)-set that contains every support vertex. We have l /∈ D′ as
the set D′ is minimal. Let us observe that D′ \ {k} ∪ {l, u, v} is a DS of
the tree T . Thus γ(T ) ≤ γ(T ′) + 2. Now let us observe that there exists
a γoi

t (T )-set that does not contain the vertex w, and does not contain
any leaf. Let D be such a set. By Observation 1 we have u, v, l ∈ D.
The vertex l has to have a neighbor in D, thus k ∈ D. We have d ∈ D
as the set V (T ) \ D is independent. Let us observe that D \ {u, v, l} is
a TOIDS of the tree T ′. Therefore γoi

t (T ′) ≤ γoi
t (T ) − 3. Now we get

γoi
t (T ′) ≤ γoi

t (T )− 3 = γ(T )− 3 ≤ γt(T
′)− 1 < γ(T ′), a contradiction.

Now assume that there is a child of d, say k, such that the distance of d
to the most distant vertex of Tk is two. Thus k is a support vertex of de-
gree two. Let T ′ = T − Tw. Let D

′ be any γ(T ′)-set. It is easy to observe
that D′ ∪ {u, v} is a DS of the tree T . Thus γ(T ) ≤ γ(T ′) + 2. Now let us
observe that there exists a γoi

t (T )-set that does not contain the vertex w,
and does not contain any leaf. Let D be such a set. By Observation 1 we
have u, v ∈ D. Observe that D \ {u, v} is a TOIDS of the tree T ′. There-
fore γoi

t (T ′) ≤ γoi
t (T ) − 2. Now we get γoi

t (T ′) ≤ γoi
t (T ) − 2 = γ(T ) − 2

≤ γ(T ′). This implies that γoi
t (T ′) = γ(T ′). By the inductive hypothesis

we have T ′ ∈ T . The tree T can be obtained from T ′ by operation O6.
Thus T ∈ T .
Now assume that some child of d, say k, is a leaf. Let T ′ = T −Tu. Let

D′ be any γ(T ′)-set. It is easy to observe that D′ ∪ {u, v} is a DS of the
tree T . Thus γ(T ) ≤ γ(T ′)+2. Let D be any γoi

t (T )-set. By Observation 1
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we have d, u, v ∈ D. Let us observe that D\{u, v} is a TOIDS of the tree T ′

as the vertex w has a neighbor in D\{u, v}. Therefore γoi
t (T ′) ≤ γoi

t (T )−2.
Now we get γoi

t (T ′) ≤ γoi
t (T ) − 2 = γ(T ) − 2 ≤ γ(T ′). This implies that

γoi
t (T ′) = γ(T ′). By the inductive hypothesis we have T ′ ∈ T . The tree T
can be obtained from T ′ by operation O7. Thus T ∈ T .
If dT (d) = 1, then let T ′ = T − Tv. We have T

′ = P4 = T1 ∈ T .
The tree T can be obtained from T ′ by operation O2. Thus T ∈ T . Now
assume that dT (d) = 2. Let T ′ be a tree obtained from T −Tu by attaching
a vertex, say y, and joining it to the vertex e. Let D′ be a γ(T ′)-set that
contains every support vertex. Let us observe that D′ \ {d} ∪ {u, v} is
a DS of the tree T . Thus γ(T ) ≤ γ(T ′) + 1. Now let us observe that
there exists a γoi

t (T )-set that does not contain the vertex w, and does not
contain any leaf. Let D be such a set. By Observation 1 we have u, v ∈ D.
The set V (T ) \ D is independent, thus d ∈ D. We have e ∈ D as the
vertex d has to be dominated. It is easy to observe that D \ {u, v} is
a TOIDS of the tree T ′. Therefore γoi

t (T ′) ≤ γoi
t (T ) − 2. Now we get

γoi
t (T ′) ≤ γoi

t (T )− 2 = γ(T )− 2 ≤ γt(T
′)− 1 < γ(T ′), a contradiction.

As an immediate consequence of Lemmas 5 and 6, we have the follow-
ing characterization of the trees with equal domination and total outer-
independent domination numbers.

Theorem 7 Let T be a tree. Then γoi
t (T ) = γ(T ) if and only if T ∈ T .
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